Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 40(1): 248, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364401

RESUMO

BACKGROUND: The identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures. METHODS: Gene fitness was determined by bioinformatics analysis from available datasets from genetic screenings. HSPD1 expression was evaluated by immunohistochemistry from formalin-fixed paraffin-embedded tissues from NSCLC patients. Real-time proliferation assays with and without cytotoxicity reagents, colony formation assays and cell cycle analyses were used to monitor growth and drug sensitivity of different NSCLC cells in vitro. In vivo growth was monitored with subcutaneous injections in immune-deficient mice. Cell metabolic activity was analyzed through extracellular metabolic flux analysis. Specific knockouts were introduced by CRISPR/Cas9. RESULTS: We show heat shock protein family D member 1 (HSPD1 or HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients' prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on oxidative phosphorylation and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B. CONCLUSIONS: These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Chaperonina 60/metabolismo , Neoplasias Pulmonares/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Análise de Sobrevida
2.
Int J Mol Sci ; 19(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060475

RESUMO

The most important feature of humoral immunity is the adaptation of the diversity of newly generated B cell receptors, that is, the antigen receptor repertoire, to the body's own and foreign structures. This includes the transient propagation of B progenitor cells and B cells, which possess receptors that are positively selected via anabolic signalling pathways under highly competitive conditions. The metabolic regulation of early B-cell development thus has important consequences for the expansion of normal or malignant pre-B cell clones. In addition, cellular senescence programs based on the expression of B cell identity factors, such as Pax5, act to prevent excessive proliferation and cellular deviation. Here, we review the basic mechanisms underlying the regulation of glycolysis and oxidative phosphorylation during early B cell development in bone marrow. We focus on the regulation of glycolysis and mitochondrial oxidative phosphorylation at the transition from non-transformed pro- to pre-B cells and discuss some ongoing issues. We introduce Swiprosin-2/EFhd1 as a potential regulator of glycolysis in pro-B cells that has also been linked to Ca2+-mediated mitoflashes. Mitoflashes are bioenergetic mitochondrial events that control mitochondrial metabolism and signalling in both healthy and disease states. We discuss how Ca2+ fluctuations in pro- and pre-B cells may translate into mitoflashes in early B cells and speculate about the consequences of these changes.


Assuntos
Linfócitos B/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Metabolismo Energético/imunologia , Animais , Cálcio/metabolismo , Glicólise/imunologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação Oxidativa
3.
Cell Death Differ ; 24(7): 1239-1252, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28524857

RESUMO

B-cell development in the bone marrow comprises proliferative and resting phases in different niches. We asked whether B-cell metabolism relates to these changes. Compared to pro B and small pre B cells, large pre B cells revealed the highest glucose uptake and ROS but not mitochondrial mass, whereas small pre B cells exhibited the lowest mitochondrial membrane potential. Small pre B cells from Rag1-/-;33.C9 µ heavy chain knock-in mice revealed decreased glycolysis (ECAR) and mitochondrial spare capacity compared to pro B cells from Rag1-/- mice. We were interested in the step regulating this metabolic switch from pro to pre B cells and uncovered that Swiprosin-2/EFhd1, a Ca2+-binding protein of the inner mitochondrial membrane involved in Ca2+-induced mitoflashes, is expressed in pro B cells, but downregulated by surface pre B-cell receptor expression. Knockdown and knockout of EFhd1 in 38B9 pro B cells decreased the oxidative phosphorylation/glycolysis (OCR/ECAR) ratio by increasing glycolysis, glycolytic capacity and reserve. Prolonged expression of EFhd1 in EFhd1 transgenic mice beyond the pro B cell stage increased expression of the mitochondrial co-activator PGC-1α in primary pre B cells, but reduced mitochondrial ATP production at the pro to pre B cell transition in IL-7 cultures. Transgenic EFhd1 expression caused a B-cell intrinsic developmental disadvantage for pro and pre B cells. Hence, coordinated expression of EFhd1 in pro B cells and by the pre BCR regulates metabolic changes and pro/pre B-cell development.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Regulação para Baixo , Técnicas de Silenciamento de Genes , Genes Mitocondriais , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA