Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 17(6): 919-932, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36694402

RESUMO

Biomarkers to guide clinical decision making at diagnosis of inflammatory bowel disease [IBD] are urgently needed. We investigated a composite serum N-glycomic biomarker to predict future disease course in a discovery cohort of 244 newly diagnosed IBD patients. In all, 47 individual glycan peaks were analysed using ultra-high performance liquid chromatography, identifying 105 glycoforms from which 24 derived glycan traits were calculated. Multivariable logistic regression was performed to determine associations of derived glycan traits with disease. Cox proportional hazard models were used to predict treatment escalation from first-line treatment to biologics or surgery (hazard ratio [HR] 25.9, p = 1.1 × 10-12; 95% confidence interval [CI], 8.52-78.78). Application to an independent replication cohort of 54 IBD patients yielded an HR of 5.1 [p = 1.1 × 10-5; 95% CI, 2.54-10.1]. These data demonstrate the prognostic capacity of serum N-glycan biomarkers and represent a step towards personalised medicine in IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/diagnóstico , Doença de Crohn/complicações , Glicômica , Doenças Inflamatórias Intestinais/complicações , Biomarcadores , Polissacarídeos
2.
Cell Mol Life Sci ; 78(2): 675-693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32333083

RESUMO

The availability and repartition of fucosylated glycans within the gastrointestinal tract contributes to the adaptation of gut bacteria species to ecological niches. To access this source of nutrients, gut bacteria encode α-L-fucosidases (fucosidases) which catalyze the hydrolysis of terminal α-L-fucosidic linkages. We determined the substrate and linkage specificities of fucosidases from the human gut symbiont Ruminococcus gnavus. Sequence similarity network identified strain-specific fucosidases in R. gnavus ATCC 29149 and E1 strains that were further validated enzymatically against a range of defined oligosaccharides and glycoconjugates. Using a combination of glycan microarrays, mass spectrometry, isothermal titration calorimetry, crystallographic and saturation transfer difference NMR approaches, we identified a fucosidase with the capacity to recognize sialic acid-terminated fucosylated glycans (sialyl Lewis X/A epitopes) and hydrolyze α1-3/4 fucosyl linkages in these substrates without the need to remove sialic acid. Molecular dynamics simulation and docking showed that 3'-Sialyl Lewis X (sLeX) could be accommodated within the binding site of the enzyme. This specificity may contribute to the adaptation of R. gnavus strains to the infant and adult gut and has potential applications in diagnostic glycomic assays for diabetes and certain cancers.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/química , Clostridiales/química , Clostridiales/enzimologia , Trato Gastrointestinal/microbiologia , Glicoconjugados/metabolismo , Humanos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA