Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Rep ; 14(1): 10696, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730068

RESUMO

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Assuntos
Anti-Inflamatórios , Antioxidantes , Antivirais , Tratamento Farmacológico da COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Antioxidantes/farmacologia , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Curcuma/química , Serina Endopeptidases/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Citocinas/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/virologia
2.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534318

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Receptores Nicotínicos , Humanos , Doença de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Nicotina/metabolismo , Dopamina/metabolismo , Astrócitos/metabolismo
3.
Neuroendocrinology ; 113(1): 14-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35760047

RESUMO

Neuroactive steroids can be synthetic or endogenous molecules produced by neuronal and glial cells and peripheral glands. Examples include estrogens, testosterone, progesterone and its reduced metabolites such as 5α-dihydro-progesterone and allopregnanolone. Steroids produced by neurons and glia target the nervous system and are called neurosteroids. Progesterone and analog molecules, known as progestogens, have been shown to exhibit neurotrophic, neuroprotective, antioxidant, anti-inflammatory, glial modulatory, promyelinating, and remyelinating effects in several experimental models of neurodegenerative and injury conditions. Pleiotropic mechanisms of progestogens may act synergistically to prevent neuron degeneration, astrocyte and microglial reactivity, reducing morbidity and mortality. The aim of this review is to summarize the significant findings related to the actions of progesterone and other progestogens in experimental models and epidemiological and clinical trials of some of the most prevalent and debilitating chronic neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We evaluated progestogen alterations under pathological conditions, how pathology modifies their levels, as well as the intracellular mechanisms and glial interactions underlying their neuroprotective effects. Furthermore, an analysis of the potential of natural progestogens and synthetic progestins as neuroprotective and regenerative agents, when administered as hormone replacement therapy in menopause, is also discussed.


Assuntos
Doença de Alzheimer , Progestinas , Feminino , Humanos , Progestinas/farmacologia , Progestinas/uso terapêutico , Progestinas/metabolismo , Progesterona/farmacologia , Progesterona/uso terapêutico , Progesterona/metabolismo , Neuroproteção , Doença de Alzheimer/metabolismo , Neurônios/metabolismo
4.
Brain Res ; 1795: 148079, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088959

RESUMO

Alzheimer's disease (AD) is the most prevalent aging-associated neurodegenerative disease, with a higher incidence in women than men. There is evidence that sex hormone replacement therapy, particularly estrogen, reduces memory loss in menopausal women. Neurofibrillary tangles are associated with tau protein aggregation, a characteristic of AD and other tauopathies. In this sense, autophagy is a promising cellular process to remove these protein aggregates. This study evaluated the autophagy mechanisms involved in neuroprotection induced by 17ß-estradiol (E2) in a Tet-On inducible expression tauopathy cell model (EGFP-tau WT or with the P301L mutation, 0N4R isoform). The results indicated that 17ß-estradiol induces autophagy by activating AMPK in a concentration-dependent manner, independent of mTOR signals. The estrogen receptor α (ERα) agonist, PPT, also induced autophagy, while the ERα antagonist, MPP, substantially attenuated the 17ß-estradiol-mediated autophagy induction. Notably, 17ß-estradiol increased LC3-II levels and phosphorylated and total tau protein clearance in the EGFP-tau WT cell line but not in EGPF-tau P301L. Similar results were observed with E2-BSA, a plasma membrane-impermeable estrogen, suggesting membrane ERα involvement in non-genomic estrogenic pathway activation. Furthermore, 17ß-estradiol-induced autophagy led to EGFP-tau protein clearance. These results demonstrate that modulating autophagy via the estrogenic pathway may represent a new therapeutic target for treating AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Proteínas Quinases Ativadas por AMP , Autofagia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Masculino , Agregados Proteicos , Receptores de Estrogênio , Serina-Treonina Quinases TOR , Proteínas tau/metabolismo
5.
Mol Cell Endocrinol ; 558: 111775, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096380

RESUMO

Gender-bias in COVID-19 severity has been suggested by clinical data. Experimental data in cell and animal models have demonstrated the role of sex hormones, particularly estrogens, in viral infections such as in COVID-19. SARS-CoV-2 uses ACE2 as a receptor to recognize host cells, and the protease TMPRSS2 for priming the Spike protein, facilitating virus entry into cells. However, the involvement of estrogenic receptors in SARS-CoV-2 infection are still being explored. Thus, in order to investigate the role of estrogen and its receptors in COVID-19, the estrogen receptors ERα, ERß and GPER1 were overexpressed in bronchial BEAS-2B cell, and then infected with SARS-CoV-2. Interestingly, the levels of ACE2 and TMPRSS2 mRNA were higher in SARS-CoV-2-infected cells, but no difference was observed in cells with estrogen receptors overexpression. GPER1 can be involved in virus infection or replication, since its higher levels reduces SARS-CoV-2 load. On the other hand, pharmacological antagonism of GPER1 enhanced viral load. Those data suggest that GPER1 has an important role in SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptores de Estrogênio , Receptor beta de Estrogênio , Receptor alfa de Estrogênio , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/genética , Estrogênios
6.
Life Sci ; 308: 120930, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075471

RESUMO

AIMS: This study evaluated SARS-CoV-2 replication in human cell lines derived from various tissues and investigated molecular mechanisms related to viral infection susceptibility and replication. MAIN METHODS: SARS-CoV-2 replication in BEAS-2B and A549 (respiratory tract), HEK-293 T (kidney), HuH7 (liver), SH-SY5Y (brain), MCF7 (breast), Huvec (endothelial) and Caco-2 (intestine) was evaluated by RT-qPCR. Concomitantly, expression levels of ACE2 (Angiotensin Converting Enzyme) and TMPRSS2 were assessed through RT-qPCR and western blot. Proteins related to autophagy and mitochondrial metabolism were monitored in uninfected cells to characterize the cellular metabolism of each cell line. The effect of ACE2 overexpression on viral replication in pulmonary cells was also investigated. KEY FINDINGS: Our data show that HuH7, Caco-2 and MCF7 presented a higher viral load compared to the other cell lines. The increased susceptibility to SARS-CoV-2 infection seems to be associated not only with the differential levels of proteins intrinsically related to energetic metabolism, such as ATP synthase, citrate synthase, COX and NDUFS2 but also with the considerably higher TMPRSS2 mRNA expression. The two least susceptible cell types, BEAS-2B and A549, showed drastically increased SARS-CoV-2 replication capacity when ACE2 was overexpressed. These modified cell lines are relevant for studying SARS-CoV-2 replication in vitro. SIGNIFICANCE: Our data not only reinforce that TMPRSS2 expression and cellular energy metabolism are important molecular mechanisms for SARS-CoV-2 infection and replication, but also indicate that HuH7, MCF7 and Caco-2 are suitable models for mechanistic studies of COVID-19. Moreover, pulmonary cells overexpressing ACE2 can be used to understand mechanisms associated with SARS-CoV-2 replication.


Assuntos
COVID-19 , Neuroblastoma , Trifosfato de Adenosina , Enzima de Conversão de Angiotensina 2/genética , Autofagia , Células CACO-2 , Citrato (si)-Sintase , Células HEK293 , Humanos , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/genética , SARS-CoV-2
7.
Front Nutr ; 9: 825629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223956

RESUMO

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been considered a public health emergency, extensively investigated by researchers. Accordingly, the respiratory tract has been the main research focus, with some other studies outlining the effects on the neurological, cardiovascular, and renal systems. However, concerning SARS-CoV-2 outcomes on skeletal muscle, scientific evidence is still not sufficiently strong to trace, treat and prevent possible muscle impairment due to the COVID-19. Simultaneously, there has been a considerable amount of studies reporting skeletal muscle damage in the context of COVID-19. Among the detrimental musculoskeletal conditions associated with the viral infection, the most commonly described are sarcopenia, cachexia, myalgia, myositis, rhabdomyolysis, atrophy, peripheral neuropathy, and Guillain-Barré Syndrome. Of note, the risk of developing sarcopenia during or after COVID-19 is relatively high, which poses special importance to the condition amid the SARS-CoV-2 infection. The yet uncovered mechanisms by which musculoskeletal injury takes place in COVID-19 and the lack of published methods tailored to study the correlation between COVID-19 and skeletal muscle hinder the ability of healthcare professionals to provide SARS-CoV-2 infected patients with an adequate treatment plan. The present review aims to minimize this burden by both thoroughly exploring the interaction between COVID-19 and the musculoskeletal system and examining the cutting-edge 3D cell culture techniques capable of revolutionizing the study of muscle dynamics.

8.
Phytother Res ; 35(9): 4988-5006, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33928690

RESUMO

The SARS-CoV-2 virus, responsible for COVID-19, spread rapidly worldwide and became a pandemic in 2020. In some patients, the virus remains in the respiratory tract, causing pneumonia, respiratory failure, acute respiratory distress syndrome (ARDS), and sepsis, leading to death. Natural flavonoids (aglycone and glycosides) possess broad biological activities encompassing antiinflammatory, antiviral, antitumoral, antiallergic, antiplatelet, and antioxidant effects. While many studies have focused on the effects of natural flavonoids in experimental models, reports based on clinical trials are still insufficient. In this review, we highlight the effects of flavonoids in controlling pulmonary diseases, particularly the acute respiratory distress syndrome, a consequence of COVID-19, and their potential use in coronavirus-related diseases. Furthermore, we also focus on establishing a relationship between biological potential and chemical aspects of related flavonoids and discuss several possible mechanisms of action, pointing out some possible effects on COVID-19.


Assuntos
COVID-19 , Flavonoides , Lesão Pulmonar , COVID-19/complicações , Flavonoides/farmacologia , Humanos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/virologia , Pandemias
9.
Sci Rep ; 11(1): 5434, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686185

RESUMO

Autophagy is a lysosomal catabolic process essential to cell homeostasis and is related to the neuroprotection of the central nervous system. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid present in Cannabis sativa. Many therapeutic actions have been linked to this compound, including autophagy activation. However, the precise underlying molecular mechanisms remain unclear, and the downstream functional significance of these actions has yet to be determined. Here, we investigated CBD-evoked effects on autophagy in human neuroblastoma SH-SY5Y and murine astrocyte cell lines. We found that CBD-induced autophagy was substantially reduced in the presence of CB1, CB2 and TRPV1 receptor antagonists, AM 251, AM 630 and capsazepine, respectively. This result strongly indicates that the activation of these receptors mediates the autophagic flux. Additionally, we demonstrated that CBD activates autophagy through ERK1/2 activation and AKT suppression. Interestingly, CBD-mediated autophagy activation is dependent on the autophagy initiator ULK1, but mTORC1 independent. Thus, it is plausible that a non-canonical pathway is involved. Our findings collectively provide evidence that CBD stimulates autophagy signal transduction via crosstalk between the ERK1/2 and AKT kinases, which represent putative regulators of cell proliferation and survival. Furthermore, our study sheds light on potential therapeutic cannabinoid targets that could be developed for treating neurodegenerative disorders.


Assuntos
Autofagia/efeitos dos fármacos , Canabidiol/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Canabidiol/química , Cannabis/química , Linhagem Celular Tumoral , Humanos , Camundongos
10.
Physiol Rep ; 9(2): e14707, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463909

RESUMO

The COVID-19 has originated from Wuhan, China, in December 2019 and has been affecting the public health system, society, and economy in an unheard-of manner. There is no specific treatment or vaccine available for COVID-19. Previous data showed that men are more affected than women by COVID-19, then we hypothesized whether sex hormones could be protecting the female organism against the infection. VERO E6 cells have been commonly used as in vitro model for SARS-CoV-2 infection. In our experimental approach, we have treated VERO E6 cells with 17ß-estradiol to evaluate the modulation of SARS-CoV-2 infection in this cell line. Here we demonstrated that estrogen protein receptors ERα, ERß, and GPER1 are expressed by VERO E6 cells and could be used to study the effects of this steroid hormone. Previous and 24-hours post-infection, cells treated with 17ß-estradiol revealed a reduction in the viral load. Afterward, we found that SARS-CoV-2 infection per se results in ACE2 and TMPRSS2 increased gene expression in VERO E6-cell, which could be generating a cycle of virus infection in host cells. The estrogen treatment reduces the levels of the TMPRSS2, which are involved with SARS-CoV-2 infectiveness capacity, and hence, reducing the pathogenicity/genesis. These data suggest that estrogen could be a potential therapeutic target promoting cell protection against SARS-CoV-2. This opens new possibilities for further studies on 17ß-estradiol in human cell lines infected by SARS-CoV-2 and at least in part, explain why men developed a more severe COVID-19 compared to women.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Estradiol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células Vero
11.
FASEB J ; 34(11): 14103-14119, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965736

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/patologia , Fatores Etários , Enzima de Conversão de Angiotensina 2 , Animais , Antígenos de Neoplasias/metabolismo , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Suscetibilidade a Doenças , Estrogênios/metabolismo , Feminino , Humanos , Pulmão/patologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Receptores de Estrogênio/metabolismo , SARS-CoV-2 , Fatores Sexuais , Transdução de Sinais
12.
Neurochem Res ; 45(11): 2749-2761, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32915398

RESUMO

Although the etiology of Parkinson's disease (PD) is multifactorial, it has been linked to abnormal accumulation of α-synuclein (α-syn) in dopaminergic neurons, which could lead to dysfunctions on intracellular organelles, with potential neurodegeneration. Patients with familial early-onset PD frequently present mutation in the α-syn gene (SNCA), which encodes mutant α-syn forms, such as A30P and A53T, which potentially regulate Ca2+ unbalance. Here we investigated the effects of overexpression of wild-type α-syn (WT) and the mutant forms A30P and A53T, on modulation of lysosomal Ca2+ stores and further autophagy activation. We found that in α-syn-overexpressing cells, there was a decrease in Ca2+ released from endoplasmic reticulum (ER) which is related to the increase in lysosomal Ca2+ release, coupled to lysosomal pH alkalization. Interestingly, α-syn-overexpressing cells showed lower LAMP1 levels, and a disruption of lysosomal morphology and distribution, affecting autophagy. Interestingly, all these effects were more evident with A53T mutant isoform when compared to A30P and WT α-syn types, indicating that the pathogenic phenotype for PD is potentially related to impairment of α-syn degradation. Taken together, these events directly impact PD-related dysfunctions, being considered possible molecular targets for neuroprotection.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Mutação , alfa-Sinucleína/genética
13.
Clinics (Sao Paulo) ; 75: e1980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32490931

RESUMO

Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Estradiol/uso terapêutico , Imunidade Inata , Inflamação/virologia , Pneumonia Viral/terapia , Animais , COVID-19 , Feminino , Humanos , Inflamação/tratamento farmacológico , Masculino , Pandemias , Ratos , SARS-CoV-2 , Fatores Sexuais
14.
Einstein (Sao Paulo) ; 18: eAO4560, 2020.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32321078

RESUMO

OBJECTIVE: To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERß) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. METHODS: Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. RESULTS: Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. CONCLUSION: The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Análise de Variância , Western Blotting , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Feminino , Citometria de Fluxo/métodos , Humanos , Células MCF-7 , Receptores Acoplados a Proteínas G/análise , Reprodutibilidade dos Testes , Sirolimo/farmacologia , Fatores de Tempo , Transfecção/métodos
15.
Int Immunopharmacol ; 84: 106495, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32298965

RESUMO

Autophagy is an important mechanism for tumor escape, allowing tumor cells to recover from the damage induced by chemotherapy, radiation therapy, and immunotherapy and contributing to the development of resistance. The pharmacological inhibition of autophagy contributes to increase the efficacy of antineoplastic agents. Exposing tumor cells to low concentrations of select autophagy-inducing antineoplastic agents increases their immunogenicity and enhances their ability to stimulate dendritic cell (DC) maturation. We tested whether the application of an autophagy-inhibiting agent, chloroquine (CQ), in combination with low concentrations of 5-fluorouracil (5-FU) increases the ability of tumor cells to induce DC maturation. DCs sensitized with the lysate of HCT-116 cells previously exposed to such a combination enhanced the DC maturation/activation ability. These matured DCs also increased the allogeneic responsiveness of both CD4+ and CD8+ T cells, which showed a greater proliferative response than those from DCs sensitized with control lysates. The T cells expanded in such cocultures were CD69+ and PD-1- and produced higher levels of IFN-γ and lower levels of IL-10, consistent with the preferential activation of Th1 cells. Cocultures of autologous DCs and lymphocytes improved the generation of cytotoxic T lymphocytes, as assessed by the expression of CD107a, perforin, and granzyme B. The drug combination increased the expression of genes related to the CEACAM family (BECN1, ATGs, MAPLC3B, ULK1, SQSTM1) and tumor suppressors (PCBP1). Furthermore, the decreased expression of genes related to metastasis and tumor progression (BNIP3, BNIP3L, FOSL2, HES1, LAMB3, LOXL2, NDRG1, P4HA1, PIK3R2) was noted. The combination of 5-FU and CQ increases the ability of tumor cells to drive DC maturation and enhances the ability of DCs to stimulate T cell responses.


Assuntos
Autofagia/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Cloroquina/farmacologia , Células Dendríticas/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Fluoruracila/farmacologia , Células HCT116 , Humanos , Ativação Linfocitária/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Ativação Transcricional/efeitos dos fármacos
16.
Clinics ; 75: e1980, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1133360

RESUMO

Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.


Assuntos
Humanos , Animais , Masculino , Feminino , Ratos , Pneumonia Viral/terapia , Infecções por Coronavirus/terapia , Estradiol/uso terapêutico , Betacoronavirus , Imunidade Inata , Inflamação/virologia , Fatores Sexuais , Pandemias , SARS-CoV-2 , COVID-19 , Inflamação/tratamento farmacológico
17.
Einstein (Säo Paulo) ; 18: eAO4560, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1101099

RESUMO

ABSTRACT Objective To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERβ) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. Methods Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. Results Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. Conclusion The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


RESUMO Objetivo Avaliar o efeito dos compostos ICI 182,780 (fulvestranto), um antagonista seletivo dos receptores de estrógeno alfa/beta (REα/REβ), e do G-1, um agonista seletivo de receptores de estrógeno acoplados a proteínas-G (GPER), na possível indução de autofagia em linhagens de câncer de mama MCF-7 e SKBr3, bem como o efeito de G-1 na viabilidade celular. Métodos A viabilidade celular de células MCF-7 e SKBr3 foi avaliada pelo ensaio com MTT. Para investigar a indução da autofagia, células MCF-7 foram transfectadas com GFP-LC3, um marcador de autofagossomos, e analisadas por microscopia de fluorescência em tempo real. As células MCF-7 e SKBr3 foram incubadas com o indicador de compartimentos ácidos laranja de acridina e analisadas por citometria de fluxo como indicativo para autofagia. Resultados Em células MCF-7, o ICI 182,780 e rapamicina após 48 horas levaram à diminuição da viabilidade celular, enquanto o G-1 não alterou a viabilidade no mesmo período de tratamento. Nem o ICI 182,780 e nem o G-1 induziram aumento na pontuação de GFP-LC3 em células MCF-7 até 4 horas. Já os ensaios de citometria de fluxo demonstraram que ICI 182,780 levou ao aumento de compartimentos ácidos em células MCF-7. O G-1 não aumentou estes parâmetros em ambas as linhagens. Por outro lado, ICI 182,780 e G-1 não induziram à redução da viabilidade em células SKBr3 e nem à formação de compartimentos ácidos, como etapa final do processo autofágico. Conclusão O aumento de compartimentos ácidos pelo ICI 182,780 em células de câncer de mama positivas para receptores de estrógeno parece estar associado com seu efeito inibidor de receptores de estrógeno, mas sem o envolvimento de GPER. A compreensão desses mecanismos pode direcionar estudos sobre o envolvimento dos receptores nos processos celulares de resistência do câncer de mama.


Assuntos
Humanos , Feminino , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Fatores de Tempo , Transfecção/métodos , Sobrevivência Celular/efeitos dos fármacos , Western Blotting , Reprodutibilidade dos Testes , Análise de Variância , Sirolimo/farmacologia , Receptores Acoplados a Proteínas G/análise , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Citometria de Fluxo/métodos
18.
Clinics (Sao Paulo) ; 73(suppl 1): e814s, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30540126

RESUMO

Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.


Assuntos
Autofagia/fisiologia , Jejum/fisiologia , Neoplasias/fisiopatologia , Neoplasias/terapia , Antineoplásicos/farmacologia , Protocolos Antineoplásicos , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Humanos , Neoplasias/metabolismo
19.
Clinics ; 73(supl.1): e814s, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974944

RESUMO

Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.


Assuntos
Humanos , Autofagia/fisiologia , Jejum/fisiologia , Neoplasias/fisiopatologia , Neoplasias/terapia , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Protocolos Antineoplásicos , Neoplasias/metabolismo , Antineoplásicos/farmacologia
20.
Oncotarget ; 8(8): 12730-12740, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28055974

RESUMO

NAADP (nicotinic acid adenine dinucleotide phosphate) has been proposed as a second messenger for glutamate in neuronal and glial cells via the activation of the lysosomal Ca2+ channels TPC1 and TPC2. However, the activities of glutamate that are mediated by NAADP remain unclear. In this study, we evaluated the effect of glutamate on autophagy in astrocytes at physiological, non-toxic concentration. We found that glutamate induces autophagy at similar extent as NAADP. By contrast, the NAADP antagonist NED-19 or SiRNA-mediated inhibition of TPC1/2 decreases autophagy induced by glutamate, confirming a role for NAADP in this pathway. The involvement of TPC1/2 in glutamate-induced autophagy was also confirmed in SHSY5Y neuroblastoma cells. Finally, we show that glutamate leads to a NAADP-dependent activation of AMPK, which is required for autophagy induction, while mTOR activity is not affected by this treatment. Taken together, our results indicate that glutamate stimulates autophagy via NAADP/TPC/AMPK axis, providing new insights of how Ca2+ signalling glutamate-mediated can control the cell metabolism in the central nervous system.


Assuntos
Astrócitos/metabolismo , Autofagia/fisiologia , Canais de Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Western Blotting , Sinalização do Cálcio/fisiologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Microscopia Confocal , NADP/análogos & derivados , NADP/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA