Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 87(21): 10935-41, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26434689

RESUMO

Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.


Assuntos
Metabolômica , Temperatura , Sangue , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray
2.
Cell Metab ; 21(6): 891-7, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25959674

RESUMO

Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biofilmes , Neoplasias do Colo , Espermina/análogos & derivados , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Espermina/metabolismo
3.
Chem Biol ; 21(11): 1575-84, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457182

RESUMO

Historically, studies of brain metabolism have been based on targeted analyses of a limited number of metabolites. Here we present an untargeted mass spectrometry-based metabolomic strategy that has successfully uncovered differences in a broad array of metabolites across anatomical regions of the mouse brain. The NSG immunodeficient mouse model was chosen because of its ability to undergo humanization leading to numerous applications in oncology and infectious disease research. Metabolic phenotyping by hydrophilic interaction liquid chromatography and nanostructure imaging mass spectrometry revealed both water-soluble and lipid metabolite patterns across brain regions. Neurochemical differences in metabolic phenotypes were mainly defined by various phospholipids and several intriguing metabolites including carnosine, cholesterol sulfate, lipoamino acids, uric acid, and sialic acid, whose physiological roles in brain metabolism are poorly understood. This study helps define regional homeostasis for the normal mouse brain to give context to the reaction to pathological events.


Assuntos
Encéfalo/metabolismo , Metabolômica , Animais , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Interações Hidrofóbicas e Hidrofílicas , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Nanoestruturas/química , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
4.
Nature ; 449(7165): 1033-6, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17960240

RESUMO

The ability of mass spectrometry to generate intact biomolecular ions efficiently in the gas phase has led to its widespread application in metabolomics, proteomics, biological imaging, biomarker discovery and clinical assays (namely neonatal screens). Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization have been at the forefront of these developments. However, matrix application complicates the use of MALDI for cellular, tissue, biofluid and microarray analysis and can limit the spatial resolution because of the matrix crystal size (typically more than 10 mum), sensitivity and detection of small compounds (less than 500 Da). Secondary-ion mass spectrometry has extremely high lateral resolution (100 nm) and has found biological applications although the energetic desorption/ionization is a limitation owing to molecular fragmentation. Here we introduce nanostructure-initiator mass spectrometry (NIMS), a tool for spatially defined mass analysis. NIMS uses 'initiator' molecules trapped in nanostructured surfaces or 'clathrates' to release and ionize intact molecules adsorbed on the surface. This surface responds to both ion and laser irradiation. The lateral resolution (ion-NIMS about 150 nm), sensitivity, matrix-free and reduced fragmentation of NIMS allows direct characterization of peptide microarrays, direct mass analysis of single cells, tissue imaging, and direct characterization of blood and urine.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Nanoestruturas , Adsorção , Animais , Análise Química do Sangue , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Embrião de Mamíferos/química , Íons/química , Lasers , Camundongos , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Análise Serial de Proteínas , Sensibilidade e Especificidade , Urina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA