Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Chem Inf Model ; 62(5): 1259-1267, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35192366

RESUMO

Therapeutic peptides offer potential advantages over small molecules in terms of selectivity, affinity, and their ability to target "undruggable" proteins that are associated with a wide range of pathologies. Despite their importance, current molecular design capabilities that inform medicinal chemistry decisions on peptide programs are limited. More specifically, there are unmet needs for structure-activity relationship (SAR) analysis and visualization of linear, cyclic, and cross-linked peptides containing non-natural motifs, which are widely used in drug discovery. To bridge this gap, we developed PepSeA (Peptide Sequence Alignment and Visualization), an open-source, freely available package of sequence-based tools (https://github.com/Merck/PepSeA). PepSeA enables multiple sequence alignment of non-natural amino acids and enhanced visualization with the hierarchical editing language for macromolecules (HELM). Via stepwise SAR analysis of a ChEMBL peptide data set, we demonstrate the utility of PepSeA to accelerate decision making in lead optimization campaigns in pharmaceutical setting. PepSeA represents an initial attempt to expand cheminformatics capabilities for therapeutic peptides and to enable rapid and more efficient design-make-test cycles.


Assuntos
Peptídeos , Proteínas , Sequência de Aminoácidos , Quimioinformática , Peptídeos/química , Alinhamento de Sequência
2.
Commun Biol ; 5(1): 125, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149761

RESUMO

With increased research funding for Alzheimer's disease (AD) and related disorders across the globe, large amounts of data are being generated. Several studies employed machine learning methods to understand the ever-growing omics data to enhance early diagnosis, map complex disease networks, or uncover potential drug targets. We describe results based on a Target Central Resource Database protein knowledge graph and evidence paths transformed into vectors by metapath matching. We extracted features between specific genes and diseases, then trained and optimized our model using XGBoost, termed MPxgb(AD). To determine our MPxgb(AD) prediction performance, we examined the top twenty predicted genes through an experimental screening pipeline. Our analysis identified potential AD risk genes: FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2. FRRS1 and FAM92B are considered dark genes, while CTRAM, SCGB3A1, and TMEFF2 are connected to TREM2-TYROBP, IL-1ß-TNFα, and MTOR-APP AD-risk nodes, suggesting relevance to the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Diagnóstico Precoce , Humanos , Aprendizado de Máquina , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias
3.
Sci Rep ; 11(1): 13751, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215797

RESUMO

Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Simulação por Computador , Diabetes Mellitus/tratamento farmacológico , Síndrome de Fanconi/tratamento farmacológico , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/ultraestrutura , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/ultraestrutura , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Interface Usuário-Computador
5.
Nat Chem Biol ; 16(10): 1111-1119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690943

RESUMO

Mass spectrometry-based discovery proteomics is an essential tool for the proximal readout of cellular drug action. Here, we apply a robust proteomic workflow to rapidly profile the proteomes of five lung cancer cell lines in response to more than 50 drugs. Integration of millions of quantitative protein-drug associations substantially improved the mechanism of action (MoA) deconvolution of single compounds. For example, MoA specificity increased after removal of proteins that frequently responded to drugs and the aggregation of proteome changes across cell lines resolved compound effects on proteostasis. We leveraged these findings to demonstrate efficient target identification of chemical protein degraders. Aggregating drug response across cell lines also revealed that one-quarter of compounds modulated the abundance of one of their known protein targets. Finally, the proteomic data led us to discover that inhibition of mitochondrial function is an off-target mechanism of the MAP2K1/2 inhibitor PD184352 and that the ALK inhibitor ceritinib modulates autophagy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteômica/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Espectrometria de Massas , Proteoma
6.
Health Informatics J ; 24(4): 394-409, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-27856785

RESUMO

Chronic obstructive pulmonary disease is a heterogeneous disease. In this retrospective study, we hypothesize that it is possible to identify clinically relevant phenotypes by applying clustering methods to electronic medical records. We included all the patients >40 years with a diagnosis of chronic obstructive pulmonary disease admitted to the University of New Mexico Hospital between 1 January 2011 and 1 May 2014. We collected admissions, demographics, comorbidities, severity markers and treatments. A total of 3144 patients met the inclusion criteria: 46 percent were >65 years and 52 percent were males. The median Charlson score was 2 (interquartile range: 1-4) and the most frequent comorbidities were depression (36%), congestive heart failure (25%), obesity (19%), cancer (19%) and mild liver disease (18%). Using the sphere exclusion method, nine clusters were obtained: depression-chronic obstructive pulmonary disease, coronary artery disease-chronic obstructive pulmonary disease, cerebrovascular disease-chronic obstructive pulmonary disease, malignancy-chronic obstructive pulmonary disease, advanced malignancy-chronic obstructive pulmonary disease, diabetes mellitus-chronic kidney disease-chronic obstructive pulmonary disease, young age-few comorbidities-high readmission rates-chronic obstructive pulmonary disease, atopy-chronic obstructive pulmonary disease, and advanced disease-chronic obstructive pulmonary disease. These clusters will need to be validated prospectively.


Assuntos
Registros Eletrônicos de Saúde , Modelos Estatísticos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Idoso , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
7.
SLAS Discov ; 23(7): 624-633, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29232168

RESUMO

DNA double-strand breaks (DSBs) are repaired primarily by homologous recombination (HR) or nonhomologous end joining (NHEJ). Compounds that modulate HR have shown promise as cancer therapeutics. The V(D)J recombination reaction, which assembles antigen receptor genes in lymphocytes, is initiated by the introduction of DNA DSBs at two recombining gene segments by the RAG endonuclease, followed by the NHEJ-mediated repair of these DSBs. Here, using HyperCyt automated flow cytometry, we develop a robust high-throughput screening (HTS) assay for NHEJ that utilizes engineered pre-B-cell lines where the V(D)J recombination reaction can be induced and monitored at a single-cell level. This approach, novel in processing four 384-well plates at a time in parallel, was used to screen the National Cancer Institute NeXT library to identify compounds that inhibit V(D)J recombination and NHEJ. Assessment of cell light scattering characteristics at the primary HTS stage (83,536 compounds) enabled elimination of 60% of apparent hits as false positives. Although all the active compounds that we identified had an inhibitory effect on RAG cleavage, we have established this as an approach that could identify compounds that inhibit RAG cleavage or NHEJ using new chemical libraries.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Citometria de Fluxo , Recombinação Homóloga , Humanos , Estrutura Molecular , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Recombinação V(D)J
8.
Nat Rev Drug Discov ; 16(1): 19-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27910877

RESUMO

The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug targets are often poorly defined in the literature, both for launched drugs and for potential therapeutic agents in discovery and development. Here, we present an updated comprehensive map of molecular targets of approved drugs. We curate a total of 893 human and pathogen-derived biomolecules through which 1,578 US FDA-approved drugs act. These biomolecules include 667 human-genome-derived proteins targeted by drugs for human disease. Analysis of these drug targets indicates the continued dominance of privileged target families across disease areas, but also the growth of novel first-in-class mechanisms, particularly in oncology. We explore the relationships between bioactivity class and clinical success, as well as the presence of orthologues between human and animal models and between pathogen and human genomes. Through the collaboration of three independent teams, we highlight some of the ongoing challenges in accurately defining the targets of molecular therapeutics and present conventions for deconvoluting the complexities of molecular pharmacology and drug efficacy.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Farmacogenética/tendências , Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas , Prescrições de Medicamentos/estatística & dados numéricos , Variação Genética , Genoma Humano , Humanos , Estados Unidos , United States Food and Drug Administration
9.
Sci Rep ; 6: 24240, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27074918

RESUMO

GLUT5, a fructose-transporting member of the facilitative glucose transporter (GLUT, SLC2) family, is a therapeutic target for diabetes and cancer but has no potent inhibitors. We virtually screened a library of 6 million chemicals onto a GLUT5 model and identified N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) as an inhibitor of GLUT5 fructose transport in proteoliposomes. MSNBA inhibition was specific to GLUT5; this inhibitor did not affect the fructose transport of human GLUT2 or the glucose transport of human GLUT1-4 or bacterial GlcPSe. In MCF7 cells, a human breast cancer cell line, MSNBA competitively inhibited GLUT5 fructose uptake with a KI of 3.2 ± 0.4 µM. Ligand docking, mutagenesis and functional studies indicate that MSNBA binds near the active site and inhibitor discrimination involves H387 of GLUT5. Thus, MSNBA is a selective and potent inhibitor of fructose transport via GLUT5, and the first chemical probe for this transporter. Our data indicate that active site differences in GLUT members could be exploited to further enhance ligand specificity.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Domínio Catalítico , Frutose/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Humanos , Células MCF-7 , Simulação de Dinâmica Molecular , Mutagênese , Ligação Proteica
10.
J Biomol Screen ; 21(1): 74-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26442911

RESUMO

A new class of biosensors, fluorogen activating proteins (FAPs), has been successfully used to track receptor trafficking in live cells. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens, and thus FAP-based assays are highly sensitive. Application of the FAP-based assay for protein trafficking in high-throughput flow cytometry resulted in the discovery of a new class of compounds that interferes with the binding between fluorogens and FAP, thus blocking the fluorescence signal. These compounds are high-affinity, nonfluorescent analogs of fluorogens with little or no toxicity to the tested cells and no apparent interference with the normal function of FAP-tagged receptors. The most potent compound among these, N,4-dimethyl-N-(2-oxo-2-(4-(pyridin-2-yl)piperazin-1-yl)ethyl)benzenesulfonamide (ML342), has been investigated in detail. X-ray crystallographic analysis revealed that ML342 competes with the fluorogen, sulfonated thiazole orange coupled to diethylene glycol diamine (TO1-2p), for the same binding site on a FAP, AM2.2. Kinetic analysis shows that the FAP-fluorogen interaction is more complex than a homogeneous one-site binding process, with multiple conformational states of the fluorogen and/or the FAP, and possible dimerization of the FAP moiety involved in the process.


Assuntos
Ligação Proteica/efeitos dos fármacos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bioensaio/métodos , Técnicas Biossensoriais , Linhagem Celular Tumoral , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Transporte Proteico/efeitos dos fármacos , Células U937
11.
PLoS One ; 10(11): e0142182, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26558612

RESUMO

Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses-using the rotationally constrained carboxylate in R-naproxen-led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and efficacy in the treatment of several epithelial cancer types on account of established human toxicity profiles and novel activities against Rho-family GTPases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cetorolaco/farmacologia , Naproxeno/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Immunoblotting , Cetorolaco/química , Cetorolaco/metabolismo , Camundongos , Microscopia Confocal , Simulação de Acoplamento Molecular , Estrutura Molecular , Células NIH 3T3 , Naproxeno/química , Naproxeno/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Estereoisomerismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
PLoS One ; 10(8): e0134317, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26247207

RESUMO

Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.


Assuntos
Inibidores Enzimáticos/química , GTP Fosfo-Hidrolases/antagonistas & inibidores , Compostos Heterocíclicos com 2 Anéis/química , Sondas Moleculares/química , Tioureia/análogos & derivados , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Integrinas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia , Células U937 , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Proteínas ras/metabolismo
13.
Mol Biol Cell ; 26(1): 43-54, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378583

RESUMO

Lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18, αLß2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1-specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation.


Assuntos
Adesão Celular , Transferência Ressonante de Energia de Fluorescência , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Ligantes , Estrutura Molecular , Conformação Proteica , Linfócitos T/citologia
14.
Anal Biochem ; 437(1): 77-87, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23470221

RESUMO

ATP binding cassette (ABC) transmembrane efflux pumps such as P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2) play an important role in anticancer drug resistance. A large number of structurally and functionally diverse compounds act as substrates or modulators of these pumps. In vitro assessment of the affinity of drug candidates for multidrug resistance proteins is central to predict in vivo pharmacokinetics and drug-drug interactions. The objective of this study was to identify and characterize new substrates for these transporters. As part of a collaborative project with Life Technologies, 102 fluorescent probes were investigated in a flow cytometric screen of ABC transporters. The primary screen compared substrate efflux activity in parental cell lines with their corresponding highly expressing resistant counterparts. The fluorescent compound library included a range of excitation/emission profiles and required dual laser excitation as well as multiple fluorescence detection channels. A total of 31 substrates with active efflux in one or more pumps and practical fluorescence response ranges were identified and tested for interaction with eight known inhibitors. This screening approach provides an efficient tool for identification and characterization of new fluorescent substrates for ABCB1, ABCC1, and ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica
15.
J Biol Chem ; 288(12): 8531-8543, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23382385

RESUMO

Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.


Assuntos
Inibidores Enzimáticos/farmacologia , Sondas Moleculares/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Células 3T3 , Regulação Alostérica , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/fisiologia , Camundongos , Oligopeptídeos/metabolismo , Compostos de Fenilureia/metabolismo , Ligação Proteica , Pseudópodes/efeitos dos fármacos , Vírus Sin Nombre/fisiologia , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
16.
J Biomol Screen ; 18(1): 26-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22923785

RESUMO

Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
ACS Chem Biol ; 7(4): 715-22, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22260433

RESUMO

TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 µM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.


Assuntos
Inibidores de Proteínas Quinases/análise , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA