Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Lancet Oncol ; 23(3): 362-373, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131040

RESUMO

BACKGROUND: Metastatic castration-resistant prostate cancers are enriched for DNA repair gene defects (DRDs) that can be susceptible to synthetic lethality through inhibition of PARP proteins. We evaluated the anti-tumour activity and safety of the PARP inhibitor niraparib in patients with metastatic castration-resistant prostate cancers and DRDs who progressed on previous treatment with an androgen signalling inhibitor and a taxane. METHODS: In this multicentre, open-label, single-arm, phase 2 study, patients aged at least 18 years with histologically confirmed metastatic castration-resistant prostate cancer (mixed histology accepted, with the exception of the small cell pure phenotype) and DRDs (assessed in blood, tumour tissue, or saliva), with progression on a previous next-generation androgen signalling inhibitor and a taxane per Response Evaluation Criteria in Solid Tumors 1.1 or Prostate Cancer Working Group 3 criteria and an Eastern Cooperative Oncology Group performance status of 0-2, were eligible. Enrolled patients received niraparib 300 mg orally once daily until treatment discontinuation, death, or study termination. For the final study analysis, all patients who received at least one dose of study drug were included in the safety analysis population; patients with germline pathogenic or somatic biallelic pathogenic alterations in BRCA1 or BRCA2 (BRCA cohort) or biallelic alterations in other prespecified DRDs (non-BRCA cohort) were included in the efficacy analysis population. The primary endpoint was objective response rate in patients with BRCA alterations and measurable disease (measurable BRCA cohort). This study is registered with ClinicalTrials.gov, NCT02854436. FINDINGS: Between Sept 28, 2016, and June 26, 2020, 289 patients were enrolled, of whom 182 (63%) had received three or more systemic therapies for prostate cancer. 223 (77%) of 289 patients were included in the overall efficacy analysis population, which included BRCA (n=142) and non-BRCA (n=81) cohorts. At final analysis, with a median follow-up of 10·0 months (IQR 6·6-13·3), the objective response rate in the measurable BRCA cohort (n=76) was 34·2% (95% CI 23·7-46·0). In the safety analysis population, the most common treatment-emergent adverse events of any grade were nausea (169 [58%] of 289), anaemia (156 [54%]), and vomiting (111 [38%]); the most common grade 3 or worse events were haematological (anaemia in 95 [33%] of 289; thrombocytopenia in 47 [16%]; and neutropenia in 28 [10%]). Of 134 (46%) of 289 patients with at least one serious treatment-emergent adverse event, the most common were also haematological (thrombocytopenia in 17 [6%] and anaemia in 13 [4%]). Two adverse events with fatal outcome (one patient with urosepsis in the BRCA cohort and one patient with sepsis in the non-BRCA cohort) were deemed possibly related to niraparib treatment. INTERPRETATION: Niraparib is tolerable and shows anti-tumour activity in heavily pretreated patients with metastatic castration-resistant prostate cancer and DRDs, particularly in those with BRCA alterations. FUNDING: Janssen Research & Development.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Trombocitopenia , Adolescente , Adulto , Antagonistas de Androgênios/uso terapêutico , Androgênios , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Reparo do DNA/genética , Humanos , Indazóis , Masculino , Piperidinas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Oncogene ; 38(13): 2241-2262, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30478448

RESUMO

The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Terapia de Alvo Molecular/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ribavirina/uso terapêutico , Linhagem Celular Tumoral , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Iniciação 4E em Eucariotos/fisiologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis , Lactente , Análise em Microsséries , Família Multigênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biossíntese de Proteínas/efeitos dos fármacos , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
4.
Genome Res ; 27(7): 1238-1249, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28385713

RESUMO

Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison-related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , Loci Gênicos , Leucemia/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Elongação da Transcrição Genética , DNA Topoisomerases Tipo II/genética , Humanos , Células K562 , Leucemia/genética , Leucemia/patologia , Proteínas de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética
5.
Pediatr Blood Cancer ; 63(7): 1175-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26999444

RESUMO

BACKGROUND: Infant acute lymphoblastic leukemia (ALL) has never occurred in families except for the ∼100% concordant cases in monozygous twins attributed to twin-to-twin metastases. We report the first kindred with infant ALL in non-twin siblings. The siblings were diagnosed with MLL-rearranged (MLL-R) ALL 26 months apart. The second affected sibling had an unaffected dichorionic monozygous co-twin. Both had fatal outcomes. PROCEDURES: Translocations were characterized by karyotype, FISH, multiplex FISH, and MLL breakpoint cluster region (bcr) Southern blot analysis. Breakpoint junctions and fusion transcripts were cloned by PCR. TP53 mutation and NADPH quinone oxidorecuctase 1 (NQO1) C609T analyses were performed, and pedigree history and parental occupations were ascertained. The likelihood of chance occurrence of infant ALL in non-twin siblings was computed based on a binomial distribution. Zygosity was determined by single nucleotide polymorphism (SNP) array. RESULTS: The translocations were not related or vertically transmitted. The complex karyotype of the proband's ALL had chromosome 2, 3, 4, and 11 abnormalities causing a 5'-MLL-AFF1-3' fusion and a non-productive rearrangement of 3'MLL with a chromosome 3q intergenic region. The affected twin's ALL exhibited a simple t(4;11). The complex karyotype of the proband's ALL suggested a genotoxic insult, but no exposure was identified. There was no germline TP53 mutation. The NQO1 C609T risk allele was absent. The likelihood of infant ALL occurring in non-twin siblings by chance alone is one in 1.198 × 10(9) families. CONCLUSIONS: Whether because of a deleterious transplacental exposure, novel predisposition syndrome, or exceedingly rare chance occurrence, MLL-R infant ALL can occur in non-twin siblings. The discordant occurrence of infant ALL in the monozygous twins was likely because they were dichorionic.


Assuntos
Cromossomos Humanos/genética , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Irmãos , Translocação Genética , Gêmeos Dizigóticos , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
6.
Blood ; 121(14): 2689-703, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23393050

RESUMO

Survival in infants younger than 1 year who have acute lymphoblastic leukemia (ALL) is inferior whether MLL is rearranged (R) or germline (G). MLL translocations confer chemotherapy resistance, and infants experience excess complications. We characterized in vitro sensitivity to the pan-antiapoptotic BCL-2 family inhibitor obatoclax mesylate in diagnostic leukemia cells from 54 infants with ALL/bilineal acute leukemia because of the role of prosurvival BCL-2 proteins in resistance, their imbalanced expression in infant ALL, and evidence of obatoclax activity with a favorable toxicity profile in early adult leukemia trials. Overall, half maximal effective concentrations (EC50s) were lower than 176 nM (the maximal plasma concentration [Cmax] with recommended adult dose) in 76% of samples, whether in MLL-AF4, MLL-ENL, or other MLL-R or MLL-G subsets, and regardless of patients' poor prognostic features. However, MLL status and partner genes correlated with EC50. Combined approaches including flow cytometry, Western blot, obatoclax treatment with death pathway inhibition, microarray analyses, and/or electron microscopy indicated a unique killing mechanism involving apoptosis, necroptosis, and autophagy in MLL-AF4 ALL cell lines and primary MLL-R and MLL-G infant ALL cells. This in vitro obatoclax activity and its multiple killing mechanisms across molecular cytogenetic subsets provide a rationale to incorporate a similarly acting compound into combination strategies to combat infant ALL.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Pirróis/uso terapêutico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Humanos , Indóis , Lactente , Recém-Nascido , Proteína de Leucina Linfoide-Mieloide/genética , Necrose/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
7.
J Biol Chem ; 284(9): 5994-6003, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19049966

RESUMO

Chromosomal abnormalities are frequently caused by problems encountered during DNA replication. Although the ATR-Chk1 pathway has previously been implicated in preventing the collapse of stalled replication forks into double-strand breaks (DSB), the importance of the response to fork collapse in ATR-deficient cells has not been well characterized. Herein, we demonstrate that, upon stalled replication, ATR deficiency leads to the phosphorylation of H2AX by ATM and DNA-PKcs and to the focal accumulation of Rad51, a marker of homologous recombination and fork restart. Because H2AX has been shown to play a facilitative role in homologous recombination, we hypothesized that H2AX participates in Rad51-mediated suppression of DSBs generated in the absence of ATR. Consistent with this model, increased Rad51 focal accumulation in ATR-deficient cells is largely dependent on H2AX, and dual deficiencies in ATR and H2AX lead to synergistic increases in chromatid breaks and translocations. Importantly, the ATM and DNA-PK phosphorylation site on H2AX (Ser(139)) is required for genome stabilization in the absence of ATR; therefore, phosphorylation of H2AX by ATM and DNA-PKcs plays a pivotal role in suppressing DSBs during DNA synthesis in instances of ATR pathway failure. These results imply that ATR-dependent fork stabilization and H2AX/ATM/DNA-PKcs-dependent restart pathways cooperatively suppress double-strand breaks as a layered response network when replication stalls.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Instabilidade Genômica , Histonas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Metáfase , Camundongos , Camundongos Knockout , Mitose , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Rad51 Recombinase/metabolismo , Radiação Ionizante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S/fisiologia , Cariotipagem Espectral , Proteínas Supressoras de Tumor/metabolismo
8.
J Biol Chem ; 284(13): 8777-85, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19112184

RESUMO

Genome integrity is maintained during DNA replication by coordination of various replisome-regulated processes. Although it is known that Timeless (Tim) is a replisome component that participates in replication checkpoint responses to genotoxic stress, its importance for genome maintenance during normal DNA synthesis has not been reported. Here we demonstrate that Tim reduction leads to genomic instability during unperturbed DNA replication, culminating in increased chromatid breaks and translocations (triradials, quadriradials, and fusions). Tim deficiency led to increased H2AX phosphorylation and Rad51 and Rad52 foci formation selectively during DNA synthesis and caused a 3-4-fold increase in sister chromatid exchange. The sister chromatid exchange events stimulated by Tim reduction were largely mediated via a Brca2/Rad51-dependent mechanism and were additively increased by deletion of the Blm helicase. Therefore, Tim deficiency leads to an increased reliance on homologous recombination for proper continuation of DNA synthesis. Together, these results indicate a pivotal role for Tim in maintaining genome stability throughout normal DNA replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Troca de Cromátide Irmã/fisiologia , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo
9.
Methods Cell Biol ; 77: 137-58, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15602910

RESUMO

We found that negatively charged, highly soluble PNA analogs with alternating phosphonates (HypNA-pPNAs) are effective and specific antisense agents in zebrafish embryos, showing comparable potency and greater specificity against chordin, ntl and uroD. In addition, we successfully phenocopied a dharma mutant that had not been found susceptible to MO knockdown. Both MO and HypNA-pPNAs against a tumor suppressor gene induced comparable upregulation of p53, illustrating similar effects on transcription profiles. HypNA-pPNAs are therefore a valuable alternative for reverse genetic studies, enabling the targeting of previously inaccessible genes in zebrafish or validating newly identified orthologs, and perhaps for reverse genetic studies in other organisms.


Assuntos
Regulação para Baixo , Ácidos Nucleicos Peptídicos/farmacologia , Peixe-Zebra/genética , Animais , Ânions/química , Ânions/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Proteínas Fetais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicoproteínas/genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Ácidos Nucleicos Peptídicos/química , Proteínas com Domínio T/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA