Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 33(11): 8132-8141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37286791

RESUMO

OBJECTIVE: Triple-negative breast cancer (TNBC) is a highly proliferative breast cancer subtype. We aimed to identify TNBC among invasive cancers presenting as masses using maximum slope (MS) and time to enhancement (TTE) measured on ultrafast (UF) DCE-MRI, ADC measured on DWI, and rim enhancement on UF DCE-MRI and early-phase DCE-MRI. METHODS: This retrospective single-center study, between December 2015 and May 2020, included patients with breast cancer presenting as masses. Early-phase DCE-MRI was performed immediately after UF DCE-MRI. Interrater agreements were evaluated using the intraclass correlation coefficient (ICC) and Cohen's kappa. Univariate and multivariate logistic regression analyses of the MRI parameters, lesion size, and patient age were performed to predict TNBC and create a prediction model. The programmed death-ligand 1 (PD-L1) expression statuses of the patients with TNBCs were also evaluated. RESULTS: In total, 187 women (mean age, 58 years ± 12.9 [standard deviation]) with 191 lesions (33 TNBCs) were evaluated. The ICC for MS, TTE, ADC, and lesion size were 0.95, 0.97, 0.83, and 0.99, respectively. The kappa values of rim enhancements on UF and early-phase DCE-MRI were 0.88 and 0.84, respectively. MS on UF DCE-MRI and rim enhancement on early-phase DCE-MRI remained significant parameters after multivariate analyses. The prediction model created using these significant parameters yielded an area under the curve of 0.74 (95% CI, 0.65, 0.84). The PD-L1-expressing TNBCs tended to have higher rim enhancement rates than the non-PD-L1-expressing TNBCs. CONCLUSION: A multiparametric model using UF and early-phase DCE-MRI parameters may be a potential imaging biomarker to identify TNBCs. CLINICAL RELEVANCE STATEMENT: Prediction of TNBC or non-TNBC at an early point of diagnosis is crucial for appropriate management. This study offers the potential of UF and early-phase DCE-MRI to offer a solution to this clinical issue. KEY POINTS: • It is crucial to predict TNBC at an early clinical period. • Parameters on UF DCE-MRI and early-phase conventional DCE-MRI help in predicting TNBC. • Prediction of TNBC by MRI may be useful in determining appropriate clinical management.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Antígeno B7-H1 , Estudos Retrospectivos , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos
2.
Diagnostics (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980417

RESUMO

Ultrafast (UF) dynamic contrast-enhanced (DCE)-MRI offers the potential for a faster and, therefore, less expensive examination of breast lesions; however, there are no reports that have evaluated whether UF DCE-MRI can be used the same as conventional DCE-MRI in the reading of morphological information. This study evaluated the agreement in morphological information obtained from malignant breast mass lesions between UF DCE-MRI and conventional DCE-MRI. UF DCE-MRI data were obtained over the first 60 s post-contrast injection, followed by the conventional DCE images. Two readers evaluated the size and morphology of the lesions in the final phase of the UF DCE-MRI and the early phase of the conventional DCE-MRI. Inter-method agreement in morphological information was evaluated for the two readers using the intraclass correlation coefficient for size, and the kappa statistics for the morphological descriptors. Differences in the proportion of each descriptor were examined using Fisher's test of independence. Most inter-method agreements were higher than substantial. UF DCE-MRI showed a circumscribed margin and homogeneous enhancement more often than conventional imaging. However, the percentages of readings showing the same morphology assessment between the UF DCE-MRI and conventional DCE-MRI were 71.2% (136/191) for Reader 1 and 69.1% (132/191) for Reader 2. We conclude that UF DCE-MRI may replace conventional DCE-MRI to evaluate the morphological information of malignant breast mass lesions.

3.
Invest Radiol ; 56(8): 501-508, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33660629

RESUMO

INTRODUCTION: The aim of this study was to investigate the variation of apparent diffusion coefficient (ADC) values with diffusion time according to breast tumor type and prognostic biomarkers expression. MATERIALS AND METHODS: A total of 201 patients with known or suspected breast tumors were prospectively enrolled in this study, and 132 breast tumors (86 malignant and 46 benign) were analyzed. Diffusion-weighted imaging scans with 2 diffusion times were acquired on a clinical 3-T magnetic resonance imaging scanner using oscillating and pulsed diffusion-encoding gradients (effective diffusion times, 4.7 and 96.6 milliseconds) and b values of 0 and 700 s/mm2. Diagnostic performances to differentiate malignant and benign breast tumors for ADC values at short and long diffusion times (ADCshort and ADClong), ΔADC (the rate of change in ADC values with diffusion time), ADC0-1000 (ADC value from a standard protocol), and standard reading including dynamic contrast-enhanced magnetic resonance imaging (BI-RADS) were investigated. The correlations of ADCshort, ADClong, and ΔADC values with hormone receptor expression and breast cancer subtypes were also analyzed. RESULTS: The ADC values were lower, and ΔADC was higher in malignant tumors compared with benign tumors. The specificity of ADC values at all diffusion times and ΔADC values for differentiating malignant and benign breast tumors was superior to that of BI-RADS (87.0%-95.7% vs 73.9%), whereas the sensitivity was inferior (87.2%-90.7% vs 100%). Lower ADCshort and ADC0-1000 in ER-positive compared with ER-negative cancers (false discovery rate [FDR]-adjusted P = 0.037 and 0.018, respectively) and lower ADCshort, ADClong, and ADC0-1000 in progesterone receptor-positive compared with progesterone receptor-negative cancers (FDR-adjusted P = 0.037, 0.036, and 0.018, respectively) were found. Ki-67-positive cancers had larger ΔADCs than Ki-67-negative cancers (FDR-adjusted P = 0.018). CONCLUSIONS: The ADC values vary with different diffusion time and vary in correlation with molecular biomarkers, especially Ki-67. Those results suggest that the diffusion time, which should be reported, might be a useful parameter to consider for breast cancer management.


Assuntos
Neoplasias da Mama , Mama , Biomarcadores , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Prognóstico , Sensibilidade e Especificidade
4.
Quant Imaging Med Surg ; 11(1): 9-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392007

RESUMO

BACKGROUND: Proton magnetic resonance spectroscopy (MRS) provides a unique opportunity for in vivo measurements of the brain's metabolic profile. Two methods of mainstream data acquisition are compared at 7 T, which provides certain advantages as well as challenges. The two representative methods have seldom been compared in terms of measured metabolite concentrations and different scan times. The current study investigated proton MRS of the posterior cingulate cortex using a semi-localized by adiabatic selective refocusing (sLASER) sequence and a short echo time (TE) stimulated echo acquisition mode (sSTEAM) sequence, and it compared their reliability and repeatability at 7 T using a 32-channel head coil. METHODS: Sixteen healthy subjects were prospectively enrolled and scanned twice with an off-bed interval between scans. The scan parameters for sLASER were a TR/TE of 6.5 s/32 ms and 32 and 48 averages (sLASER×32 and sLASER×48, respectively). The scan parameters for sSTEAM were a TR/TE of 4 s/5 ms and 32, 48, and 64 averages (sSTEAM4×32, sSTEAM4×48, and sSTEAM4×64, respectively) in addition to that with a TR/TE of 8 s/5 ms and 32 averages (sSTEAM8×32). Data were analyzed using LCModel. Metabolites quantified with Cramér-Rao lower bounds (CRLBs) >50% were classified as not detected, and metabolites quantified with mean or median CRLBs ≤20% were included for further analysis. The SNR, CRLBs, coefficient of variation (CV), and metabolite concentrations were statistically compared using the Shapiro-Wilk test, one-way ANOVA, or the Friedman test. RESULTS: The sLASER spectra for N-acetylaspartate + N-acetylaspartylglutamate (tNAA) and glutamate (Glu) had a comparable or higher SNR than sSTEAM spectra. Ten metabolites had lower CRLBs than prefixed thresholds: aspartate (Asp), γ-aminobutyric acid (GABA), glutamine (Gln), Glu, glutathione (GSH), myo-inositol (Ins), taurine (Tau), the total amount of phosphocholine + glycerophosphocholine (tCho), creatine + phosphocreatine (tCr), and tNAA. Performance of the two sequences was satisfactory except for GABA, for which sLASER yielded higher CRLBs (≥18%) than sSTEAM. Some significant differences in CRLBs were noted, but they were ≤2% except for GABA and Gln. Signal averaging significantly lowered CRLBs for some metabolites but only by a small amount. Measurement repeatability as indicated by median CVs was ≤10% for Gln, Glu, Ins, tCho, tCr, and tNAA in all scans, and that for Asp, GABA, GSH, and Tau was ≥10% under some scanning conditions. The CV for GABA according to sLASER was significantly higher than that according to sSTEAM, whereas the CV for Ins was higher according to sSTEAM. An increase in signal averaging contribute little to lower CVs except for Ins. CONCLUSIONS: Both sequences quantified brain metabolites with a high degree of precision and repeatability. They are comparable except for GABA, for which sSTEAM would be a better choice.

5.
Magn Reson Imaging ; 71: 154-160, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32302738

RESUMO

PURPOSE: To evaluate the diagnostic performance of a multiparametric approach to breast lesions including apparent diffusion coefficient (ADC) from diffusion-weighted images (DWI), maximum slope (MS) from ultrafast dynamic contrast enhanced (UF-DCE) MRI, lesion size, and patient's age. MATERIALS AND METHODS: In total, 96 lesions (73 malignant, 23 benign) were evaluated. UF-DCE MRI was acquired using a prototype 3D-gradient-echo volumetric interpolated breath-hold examination (VIBE) with compressed sensing. Images were obtained up to 1 min after gadolinium injection. MS was calculated as the percentage relative enhancement/s. An ADC map was automatically generated from DWI at b = 0 and b = 1000 s/mm2. MS and ADC values were measured by two radiologists independently. Interrater agreement was evaluated using intraclass correlation coefficients. Univariate and multivariate logistic regression analyses were performed using MS, ADC, lesion size, and the patient's age. The parameters of the prediction model were generated from the results of the multivariate logistic regression analysis. Area under the curve (AUC) was used to compare diagnostic performance of the prediction model and each parameter. RESULTS: Interrater agreements on MS and ADC were excellent (ICC 0.99 and 0.88, respectively). MS, ADC, and patient's age remained as significant parameters after univariate and multivariate logistic regression analysis. The prediction model using these significant parameters yielded an AUC of 0.90, significantly higher than that of MS (AUC 0.74, p = 0.01). The AUCs of ADC, MS, patient's age were 0.87, 0.74 and 0.73, respectively. CONCLUSIONS: A multiparametric model using ADC from DWI, MS from UF-DCE MRI, and patient's age showed excellent diagnostic performance, with greater contribution of ADC. Combining DWI and UF-DCE MRI might reduce scanning time while preserving diagnostic performance.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Aumento da Imagem/métodos , Razão Sinal-Ruído , Adulto , Idoso , Área Sob a Curva , Feminino , Gadolínio , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA