Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621494

RESUMO

Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.


Assuntos
Níquel , Plantas , Microbiologia do Solo , Poluentes do Solo , Níquel/toxicidade , Níquel/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Humanos , Plantas/efeitos dos fármacos , Plantas/metabolismo , Ecossistema , Solo/química , Monitoramento Ambiental
2.
Nutrients ; 15(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836560

RESUMO

Breast cancer (BC) is the most common malignancy, and conventional medicine has failed to establish efficient treatment modalities. Conventional medicine failed due to lack of knowledge of the mechanisms that underpin the onset and metastasis of tumors, as well as resistance to treatment regimen. However, Complementary and Alternative medicine (CAM) modalities are currently drawing the attention of both the public and health professionals. Our study examined the effect of a super-combination (SC) of crude extracts, which were isolated from three selected Qatari medicinal plants, on the proliferation, motility and death of BC cells. Our results revealed that SC attenuated cell growth and caused the cell death of MDA-MB-231 cancer cells when compared to human normal neonatal fibroblast cells. On the other hand, functional assays showed that SC reduced BC cell migration and invasion, respectively. SC-inhibited cell cycle and SC-regulated apoptosis was most likely mediated by p53/p21 pathway and p53-regulated Bax/BCL-2/Caspace-3 pathway. Our ongoing experiments aim to validate these in vitro findings in vivo using a BC-Xenograft mouse model. These findings support our hypothesis that SC inhibited BC cell proliferation and induced apoptosis. These findings lay the foundation for further experiments, aiming to validate SC as an effective chemoprevention and/or chemotherapeutic strategy that can ultimately pave the way towards translational research/clinical trials for the eradication of BC.


Assuntos
Neoplasias da Mama , Plantas Medicinais , Recém-Nascido , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/metabolismo , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Movimento Celular
3.
Ecotoxicol Environ Saf ; 243: 113969, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969983

RESUMO

Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland's solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.


Assuntos
Brassica , Poluentes do Solo , Antioxidantes/farmacologia , Brassica/genética , Cádmio/toxicidade , Clorofila A , Óxido Nítrico/farmacologia , Raízes de Plantas , Areia , Poluentes do Solo/toxicidade
4.
Plants (Basel) ; 11(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684174

RESUMO

The excessive use of nickel (Ni) in manufacturing and various industries has made Ni a serious pollutant in the past few decades. As a micronutrient, Ni is crucial for plant growth at low concentrations, but at higher concentrations, it can hamper growth. We evaluated the effects of Ni concentrations on nitrate (NO3-) and ammonium (NH4+) concentrations, and nitrogen metabolism enzyme activity in rice seedlings grown in hydroponic systems, using different Ni concentrations. A Ni concentration of 200 µM significantly decreased the NO3- concentration in rice leaves, as well as the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthetase (GOGAT), respectively, when compared to the control. By contrast, the NH4+ concentration and glutamate dehydrogenase (GDH) activity both increased markedly by 48% and 46%, respectively, compared with the control. Furthermore, the activity of most active aminotransferases, including glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT), was inhibited by 48% and 36%, respectively, in comparison with the control. The results indicate that Ni toxicity causes the enzymes involved in N assimilation to desynchronize, ultimately negatively impacting the overall plant growth.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35162678

RESUMO

Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. This study was carried out to assess the beneficial role of two different kinds of (S)-fertilizer in the phytoremediation of Cd contaminated soil through Solanum nigrum L. Gypsum (Gyp) and Elemental sulfur (ES) was applied alone and in combination with different ratios (0, 100:0, 0:100, 50:50 mg kg-1) accompanied by different Cd levels (0, 25, 50 mg kg-1). After seventy days of sowing, plants were harvested for determination of growth, physiological characteristics, oxidants and antioxidants, along with Cd uptake from different parts of the plant. Cd toxicity significantly inhibited growth, physiology and plant defence systems, and also increased Cd uptake in the roots and shoots of Solanum nigrum L. The application of Gyp 100 mg kg-1 boosted plant growth and physiology along with oxidants and antioxidants activity as compared to ES 100 mg kg-1 alone, and combine application of GYP+ES 50 + 50 mg kg-1. The application of ES 100 mg kg-1 showed an effective approach to decreasing Cd uptake as compared to Gyp 100 mg kg-1. Overall results showed that the combined application of GYP+ES 50 + 50 mg kg-1 significantly enhanced the phytoremediation potential of S. nigrum in Cd contaminated soil. Thus, it is highly recommended to apply the combined application of GYP+ES for phytoremediation of Cd contaminated soil.


Assuntos
Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Cádmio/análise , Fertilizantes/análise , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Enxofre
6.
Toxics ; 9(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673174

RESUMO

In recent years, Qatar has witnessed exponential growth in the human population, urbanization, and increased anthropogenic activities, including agriculture. Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study's findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of -0.2-2.5 further indicated that the soil was up to 58% polluted. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a noncarcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10-4 and 2.06 × 10-4 for adults and children, respectively, proved carcinogenic to both age groups. The elements' carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar. Reducing the elements' bioavailability in soil and developing innovative remediation technologies is needed to limit potential risks to human health. Further studies on As, Cr, and Ni gastrointestinal bioaccessibilities are needed to fully understand the effects after long-term exposure and the cancer-causing potential of these elements over a lifetime.

7.
Sci Rep ; 9(1): 5658, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948781

RESUMO

Heavy metals constitute some of the most significant environmental contaminants today. The abundance of naturally growing Tetraena qataranse around Ras Laffan oil and gas facilities in the state of Qatar reflects its toxitolerant character. This study examined the desert plant's tolerance to Ba, Cd, Cr, Cu, Ni and Pb relative to soil concentration. Analysis by inductively coupled plasma - optical emission spectroscopy (ICP-OES) showed that the plant biomass accumulates higher Cd, Cr, Cu and Ni concentration than the soil, particularly in the root. The bioconcentration factor (BCF) of all metals in the root and shoot indicates the plant's capacity to accumulate these metals. Cd had a translocation factor (TF) greater than one; however, it is less than one for all other metals, suggesting that the plant remediate Cd by phytoextraction, where it accumulates in the shoot and Cr, Cu and Ni through phytostabilization, concentrating the metals in the root. Metals phytostabilization restrict transport, shield animals from toxic species ingestion, and consequently prevent transmission across the food chain. Fourier Transform Infrared Spectroscopy (FTIR) analysis further corroborates ICP-OES quantitative data. Our results suggest that T. qataranse is tolerant of Cd, Cr, Cu, and Ni. Potentially, these metals can accumulate at higher concentration than shown here; hence, T. qataranse is a suitable candidate for toxic metals phytostabilization.


Assuntos
Zygophyllaceae/química , Zygophyllaceae/metabolismo , Bioacumulação/fisiologia , Biodegradação Ambiental , Biomassa , Cádmio/análise , Cádmio/metabolismo , Cromo/análise , Cromo/metabolismo , Cobre/análise , Cobre/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Metais Pesados/análise , Níquel/análise , Níquel/metabolismo , Brotos de Planta/química , Plantas , Catar , Solo/química , Poluentes do Solo/análise , Zygophyllaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA