Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560113

RESUMO

Traditional advertising techniques seek to govern the consumer's opinion toward a product, which may not reflect their actual behavior at the time of purchase. It is probable that advertisers misjudge consumer behavior because predicted opinions do not always correspond to consumers' actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer behavior and decision making, as well as the prediction of their gestures for product utilization through an unconscious process. Existing methods do not focus on effective preprocessing and classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method for preprocessing and classification of EEG signals is proposed. The proposed method involves effective preprocessing of EEG signals by removing noise and a synthetic minority oversampling technique (SMOTE) to deal with the class imbalance problem. The dataset employed in this study is a publicly available neuromarketing dataset. Automated features were extracted by using a long short-term memory network (LSTM) and then concatenated with handcrafted features like power spectral density (PSD) and discrete wavelet transform (DWT) to create a complete feature set. The classification was done by using the proposed hybrid classifier that optimizes the weights of two machine learning classifiers and one deep learning classifier and classifies the data between like and dislike. The machine learning classifiers include the support vector machine (SVM), random forest (RF), and deep learning classifier (DNN). The proposed hybrid model outperforms other classifiers like RF, SVM, and DNN and achieves an accuracy of 96.89%. In the proposed method, accuracy, sensitivity, specificity, precision, and F1 score were computed to evaluate and compare the proposed method with recent state-of-the-art methods.


Assuntos
Eletroencefalografia , Emoções , Eletroencefalografia/métodos , Análise de Ondaletas , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte
2.
Sensors (Basel) ; 22(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36502183

RESUMO

Emotion charting using multimodal signals has gained great demand for stroke-affected patients, for psychiatrists while examining patients, and for neuromarketing applications. Multimodal signals for emotion charting include electrocardiogram (ECG) signals, electroencephalogram (EEG) signals, and galvanic skin response (GSR) signals. EEG, ECG, and GSR are also known as physiological signals, which can be used for identification of human emotions. Due to the unbiased nature of physiological signals, this field has become a great motivation in recent research as physiological signals are generated autonomously from human central nervous system. Researchers have developed multiple methods for the classification of these signals for emotion detection. However, due to the non-linear nature of these signals and the inclusion of noise, while recording, accurate classification of physiological signals is a challenge for emotion charting. Valence and arousal are two important states for emotion detection; therefore, this paper presents a novel ensemble learning method based on deep learning for the classification of four different emotional states including high valence and high arousal (HVHA), low valence and low arousal (LVLA), high valence and low arousal (HVLA) and low valence high arousal (LVHA). In the proposed method, multimodal signals (EEG, ECG, and GSR) are preprocessed using bandpass filtering and independent components analysis (ICA) for noise removal in EEG signals followed by discrete wavelet transform for time domain to frequency domain conversion. Discrete wavelet transform results in spectrograms of the physiological signal and then features are extracted using stacked autoencoders from those spectrograms. A feature vector is obtained from the bottleneck layer of the autoencoder and is fed to three classifiers SVM (support vector machine), RF (random forest), and LSTM (long short-term memory) followed by majority voting as ensemble classification. The proposed system is trained and tested on the AMIGOS dataset with k-fold cross-validation. The proposed system obtained the highest accuracy of 94.5% and shows improved results of the proposed method compared with other state-of-the-art methods.


Assuntos
Nível de Alerta , Emoções , Humanos , Emoções/fisiologia , Nível de Alerta/fisiologia , Análise de Ondaletas , Eletroencefalografia/métodos , Máquina de Vetores de Suporte
3.
Seizure ; 71: 258-269, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479850

RESUMO

Patients suffering from epileptic seizures are usually treated with medication and/or surgical procedures. However, in more than 30% of cases, medication or surgery does not effectively control seizure activity. A method that predicts the onset of a seizure before it occurs may prove useful as patients might be alerted to make themselves safe or seizures could be prevented with therapeutic interventions just before they occur. Abnormal neuronal activity, the preictal state, starts a few minutes before the onset of a seizure. In recent years, different methods have been proposed to predict the start of the preictal state. These studies follow some common steps, including recording of EEG signals, preprocessing, feature extraction, classification, and postprocessing. However, online prediction of epileptic seizures remains a challenge as all these steps need further refinement to achieve high sensitivity and low false positive rate. In this paper, we present a comparison of state-of-the-art methods used to predict seizures using both scalp and intracranial EEG signals and suggest improvements to existing methods.


Assuntos
Eletrocorticografia/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Redes Neurais de Computação , Convulsões/diagnóstico , Máquina de Vetores de Suporte , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA