Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Facial Plast Surg ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688299

RESUMO

Septorhinoplasty (SRP) is one of the most common aesthetic procedures worldwide. A thin or scarred soft tissue envelope, especially in the context of secondary SRP, can lead to unpredictable scarring, shrinkage, and discoloration of the skin. Other than the careful preparation of the soft tissue mantle, no gold standard exists to minimize the above-mentioned risks. Our aim was to create a thin "separation layer" between the nasal bridge (osseous and cartilaginous) and the skin envelope by autologous fat transfer with the addition of platelet-rich fibrin (PRF) to conceal small irregularities, to improve the quality of the skin soft tissue mantle, and to optimize the mobility of the skin. We report 21 patients who underwent SRP on a voluntary basis. All patients had either thin skin and/or revision SRP with scarring. Macroscopic fat harvested from the periumbilical or rib region was minced and purified. PRF was obtained by centrifugation of autologous whole blood samples and mixed with the fat to form a graft, which was then transferred to the nasal dorsum. Postoperative monitoring of graft survival included sonography and magnetic resonance imaging (MRI) of the nose. The harvested adipose tissue was also analyzed in vitro. In the postoperative follow-up after 1 year, survival of the adipose tissue was demonstrated in all patients by both sonography and MRI. The in vitro analysis showed interindividual differences in the quantity, size, and quality of the transplanted adipocytes. Camouflage of the nasal bridge by using adipose tissue was beneficial for the quality of the skin soft tissue mantle and hence represents a good alternative to known methods. Future aims include the ability to assess the quality of adipose tissue to be transplanted based on clinical parameters. Level of evidence: N/A.

2.
Mol Metab ; 83: 101915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492844

RESUMO

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Assuntos
Peso Corporal , Ingestão de Alimentos , Polipeptídeo Inibidor Gástrico , Camundongos Knockout , Obesidade , Receptores dos Hormônios Gastrointestinais , Receptores para Leptina , Animais , Masculino , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
3.
Stem Cell Reports ; 18(10): 1972-1986, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714147

RESUMO

The formation of vascular structures is fundamental for in vitro tissue engineering. Vascularization can enable the nutrient supply within larger structures and increase transplantation efficiency. We differentiated human induced pluripotent stem cells toward endothelial cells in 3D suspension culture. To investigate in vitro neovascularization and various 3D microenvironmental approaches, we designed a comprehensive single-cell transcriptomic study. Time-resolved single-cell transcriptomics of the endothelial and co-evolving mural cells gave insights into cell type development, stability, and plasticity. Transfer to a 3D hydrogel microenvironment induced neovascularization and facilitated tracing of migrating, coalescing, and tubulogenic endothelial cell states. During maturation, we monitored two pericyte subtypes evolving mural cells. Profiling cell-cell interactions between pericytes and endothelial cells revealed angiogenic signals during tubulogenesis. In silico discovered ligands were tested for their capability to attract endothelial cells. Our data, analyses, and results provide an in vitro roadmap to guide vascularization in future tissue engineering.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Técnicas de Cocultura , Neovascularização Patológica , Pericitos/metabolismo
4.
BMC Biol ; 21(1): 150, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403071

RESUMO

BACKGROUND: Biological aging is an important factor leading to the development of pathologies associated with metabolic dysregulation, including type 2 diabetes, cancer, cardiovascular and neurodegenerative diseases. Telomere length, a central feature of aging, has additionally been identified as inversely associated with glucose tolerance and the development of type 2 diabetes. However, the effects of shortened telomeres on body weight and metabolism remain incompletely understood. Here, we studied the metabolic consequences of moderate telomere shortening using second generation loss of telomerase activity in mice. RESULTS: Aged male and female G2 Terc-/- mice and controls were characterized with respect to body weight and composition, glucose homeostasis, insulin sensitivity and metabolic activity. This was complemented with molecular and histological analysis of adipose tissue, liver and the intestine as well as microbiota analysis. We show that moderate telomere shortening leads to improved insulin sensitivity and glucose tolerance in aged male and female G2 Terc-/- mice. This is accompanied by reduced fat and lean mass in both sexes. Mechanistically, the metabolic improvement results from reduced dietary lipid uptake in the intestine, characterized by reduced gene expression of fatty acid transporters in enterocytes of the small intestine. Furthermore, G2-Terc-/- mice showed significant alterations in the composition of gut microbiota, potentially contributing to the improved glucose metabolism. CONCLUSIONS: Our study shows that moderate telomere shortening reduces intestinal lipid absorption, resulting in reduced adiposity and improved glucose metabolism in aged mice. These findings will guide future murine and human aging studies and provide important insights into the age associated development of type 2 diabetes and metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Telomerase , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Peso Corporal , Ácidos Graxos , Glucose/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Telomerase/genética
5.
Life Sci Alliance ; 4(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257475

RESUMO

Brown adipose tissue (BAT) plays an important role in the regulation of body weight and glucose homeostasis. Although increasing evidence supports white adipose tissue heterogeneity, little is known about heterogeneity within murine BAT. Recently, UCP1 high and low expressing brown adipocytes were identified, but a developmental origin of these subtypes has not been studied. To obtain more insights into brown preadipocyte heterogeneity, we use single-cell RNA sequencing of the BAT stromal vascular fraction of C57/BL6 mice and characterize brown preadipocyte and adipocyte clonal cell lines. Statistical analysis of gene expression profiles from brown preadipocyte and adipocyte clones identify markers distinguishing brown adipocyte subtypes. We confirm the presence of distinct brown adipocyte populations in vivo using the markers EIF5, TCF25, and BIN1. We also demonstrate that loss of Bin1 enhances UCP1 expression and mitochondrial respiration, suggesting that BIN1 marks dormant brown adipocytes. The existence of multiple brown adipocyte subtypes suggests distinct functional properties of BAT depending on its cellular composition, with potentially distinct functions in thermogenesis and the regulation of whole body energy homeostasis.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Transcriptoma , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Célula Única/métodos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Nat Metab ; 2(2): 192-209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32694693

RESUMO

Dedifferentiation of insulin-secreting ß cells in the islets of Langerhans has been proposed to be a major mechanism of ß-cell dysfunction. Whether dedifferentiated ß cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study ß-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with ß-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in ß cells and restores maturation and function for diabetes remission. Additional ß-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1-oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases ß-cell survival and regeneration. GLP-1-oestrogen also protects human ß cells against cytokine-induced dysfunction. This study not only describes mechanisms of ß-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated ß cells for diabetes remission.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/patologia , Insulina/uso terapêutico , Animais , Diabetes Mellitus Experimental/patologia , Estrogênios/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Homeostase , Humanos , Camundongos , Polifarmacologia , Indução de Remissão , Estreptozocina
7.
Mar Drugs ; 17(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083362

RESUMO

Obesity is a complex disease resulting in several metabolic co-morbidities and is increasing at epidemic rates. The marine environment is an interesting resource of novel compounds and in particular cyanobacteria are well known for their capacity to produce novel secondary metabolites. In this work, we explored the potential of cyanobacteria for the production of compounds with relevant activities towards metabolic diseases using a blend of target-based, phenotypic and zebrafish assays as whole small animal models. A total of 46 cyanobacterial strains were grown and biomass fractionated, yielding in total 263 fractions. Bioactivities related to metabolic function were tested in different in vitro and in vivo models. Studying adipogenic and thermogenic gene expression in brown adipocytes, lipid metabolism and glucose uptake in hepatocytes, as well as lipid metabolism in zebrafish larvae, we identified 66 (25%) active fractions. This together with metabolite profiling and the evaluation of toxicity allowed the identification of 18 (7%) fractions with promising bioactivity towards different aspects of metabolic disease. Among those, we identified several known compounds, such as eryloside T, leptosin F, pheophorbide A, phaeophytin A, chlorophyll A, present as minor peaks. Those compounds were previously not described to have bioactivities in metabolic regulation, and both known or unknown compounds could be responsible for such effects. In summary, we find that cyanobacteria hold a huge repertoire of molecules with specific bioactivities towards metabolic diseases, which needs to be explored in the future.


Assuntos
Fármacos Antiobesidade/farmacologia , Cianobactérias/química , Obesidade/tratamento farmacológico , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/fisiologia , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/toxicidade , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , PPAR gama/metabolismo , Testes de Toxicidade , Proteína Desacopladora 1/metabolismo , Peixe-Zebra
8.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530479

RESUMO

Recent studies suggest that, even within a single adipose depot, there may be distinct subpopulations of adipocytes. To investigate this cellular heterogeneity, we have developed multiple conditionally immortalized clonal preadipocyte lines from white adipose tissue of mice. Analysis of these clones reveals at least three white adipocyte subpopulations. These subpopulations have differences in metabolism and differentially respond to inflammatory cytokines, insulin, and growth hormones. These also have distinct gene expression profiles and can be tracked by differential expression of three marker genes: Wilms' tumor 1, transgelin, and myxovirus 1. Lineage tracing analysis with dual-fluorescent reporter mice indicates that these adipocyte subpopulations have differences in gene expression and metabolism that mirror those observed in the clonal cell lines. Furthermore, preadipocytes and adipocytes from these subpopulations differ in their abundance in different fat depots. Thus, white adipose tissue, even in a single depot, is comprised of distinct subpopulations of white adipocytes with different physiological phenotypes. These differences in adipocyte composition may contribute to the differences in metabolic behavior and physiology of different fat depots.


Assuntos
Adipócitos Brancos/classificação , Adipócitos Brancos/citologia , Adipogenia , Tecido Adiposo/citologia , Biomarcadores/análise , Adipócitos Brancos/fisiologia , Tecido Adiposo/fisiologia , Animais , Citocinas/metabolismo , Metabolismo Energético , Hormônio do Crescimento Humano/metabolismo , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteínas Repressoras/metabolismo , Transcriptoma , Proteínas WT1
9.
Diabetes ; 66(4): 886-896, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096258

RESUMO

Insulin receptors (IRs) and IGF-I receptors (IGF-IR) are major regulators of metabolism and cell growth throughout the body; however, their roles in the intestine remain controversial. Here we show that genetic ablation of the IR or IGF-IR in intestinal epithelial cells of mice does not impair intestinal growth or development or the composition of the gut microbiome. However, the loss of IRs alters intestinal epithelial gene expression, especially in pathways related to glucose uptake and metabolism. More importantly, the loss of IRs reduces intestinal glucose uptake. As a result, mice lacking the IR in intestinal epithelium retain normal glucose tolerance during aging compared with controls, which show an age-dependent decline in glucose tolerance. Loss of the IR also results in a reduction of glucose-dependent insulinotropic polypeptide (GIP) expression from enteroendocrine K-cells and decreased GIP release in vivo after glucose ingestion but has no effect on glucagon-like peptide 1 expression or secretion. Thus, the IR in the intestinal epithelium plays important roles in intestinal gene expression, glucose uptake, and GIP production, which may contribute to pathophysiological changes in individuals with diabetes, metabolic syndrome, and other insulin-resistant states.


Assuntos
Microbioma Gastrointestinal/fisiologia , Glucose/metabolismo , Mucosa Intestinal/metabolismo , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Animais , Western Blotting , DNA Ribossômico/genética , Imunofluorescência , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Microbioma Gastrointestinal/genética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Intestinos/crescimento & desenvolvimento , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
10.
Nat Med ; 20(4): 350-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24681597

RESUMO

Kindlin-1 is an integrin tail binding protein that controls integrin activation. Mutations in the FERMT-1 gene, which encodes for Kindlin-1, lead to Kindler syndrome in man, which is characterized by skin blistering, premature skin aging and skin cancer of unknown etiology. Here we show that loss of Kindlin-1 in mouse keratinocytes recapitulates Kindler syndrome and also produces enlarged and hyperactive stem cell compartments, which lead to hyperthickened epidermis, ectopic hair follicle development and increased skin tumor susceptibility. Mechanistically, Kindlin-1 controls keratinocyte adhesion through ß1-class integrins and proliferation and differentiation of cutaneous epithelial stem cells by promoting α(v)ß(6) integrin-mediated transforming growth factor-ß (TGF-ß) activation and inhibiting Wnt-ß-catenin signaling through integrin-independent regulation of Wnt ligand expression. Our findings assign Kindlin-1 the previously unknown and essential task of controlling cutaneous epithelial stem cell homeostasis by balancing TGF-ß-mediated growth-inhibitory signals and Wnt-ß-catenin-mediated growth-promoting signals.


Assuntos
Vesícula , Proteínas de Transporte/fisiologia , Proliferação de Células , Epidermólise Bolhosa , Queratinócitos/metabolismo , Doenças Periodontais , Transtornos de Fotossensibilidade , Pele/citologia , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Proteínas de Transporte/genética , Adesão Celular/genética , Adesão Celular/fisiologia , Modelos Animais de Doenças , Folículo Piloso/patologia , Integrina beta1/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
11.
Am J Pathol ; 175(4): 1431-41, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19762710

RESUMO

Kindler syndrome is an autosomal recessive disorder characterized by skin atrophy and blistering. It results from loss-of-function mutations in the FERMT1 gene encoding the focal adhesion protein, fermitin family homolog-1. How and why deficiency of fermitin family homolog-1 results in skin atrophy and blistering are unclear. In this study, we investigated the epidermal basement membrane and keratinocyte biology abnormalities in Kindler syndrome. We identified altered distribution of several basement membrane proteins, including types IV, VII, and XVII collagens and laminin-332 in Kindler syndrome skin. In addition, reduced immunolabeling intensity of epidermal cell markers such as beta1 and alpha6 integrins and cytokeratin 15 was noted. At the cellular level, there was loss of beta4 integrin immunolocalization and random distribution of laminin-332 in Kindler syndrome keratinocytes. Of note, active beta1 integrin was reduced but overexpression of fermitin family homolog-1 restored integrin activation and partially rescued the Kindler syndrome cellular phenotype. This study provides evidence that fermitin family homolog-1 is implicated in integrin activation and demonstrates that lack of this protein leads to pathological changes beyond focal adhesions, with disruption of several hemidesmosomal components and reduced expression of keratinocyte stem cell markers. These findings collectively provide novel data on the role of fermitin family homolog-1 in skin and further insight into the pathophysiology of Kindler syndrome.


Assuntos
Anormalidades Múltiplas/genética , Integrinas/metabolismo , Proteínas de Membrana/genética , Mutação/genética , Proteínas de Neoplasias/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Membrana Basal/metabolismo , Membrana Basal/patologia , Adesão Celular , Membrana Celular/metabolismo , Criança , Pré-Escolar , Epiderme/metabolismo , Epiderme/patologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Queratina-15/genética , Queratina-15/metabolismo , Queratinócitos/patologia , Masculino , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Fenótipo , Síndrome
12.
Nat Med ; 15(3): 306-12, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234463

RESUMO

Integrins are the major adhesion receptors of leukocytes and platelets. Beta1 and beta2 integrin function on leukocytes is crucial for a successful immune response and the platelet integrin alpha(IIb)beta3 initiates the process of blood clotting through binding fibrinogen. Integrins on circulating cells bind poorly to their ligands but become active after 'inside-out' signaling through other membrane receptors. Subjects with leukocyte adhesion deficiency-1 (LAD-I) do not express beta2 integrins because of mutations in the gene specifying the beta2 subunit, and they suffer recurrent bacterial infections. Mutations affecting alpha(IIb)beta3 integrin cause the bleeding disorder termed Glanzmann's thrombasthenia. Subjects with LAD-III show symptoms of both LAD-I and Glanzmann's thrombasthenia. Their hematopoietically-derived cells express beta1, beta2 and beta3 integrins, but defective inside-out signaling causes immune deficiency and bleeding problems. The LAD-III lesion has been attributed to a C --> A mutation in the gene encoding calcium and diacylglycerol guanine nucleotide exchange factor (CALDAGGEF1; official symbol RASGRP2) specifying the CALDAG-GEF1 protein, but we show that this change is not responsible for the LAD-III disorder. Instead, we identify mutations in the KINDLIN3 (official symbol FERMT3) gene specifying the KINDLIN-3 protein as the cause of LAD-III in Maltese and Turkish subjects. Two independent mutations result in decreased KINDLIN3 messenger RNA levels and loss of protein expression. Notably, transfection of the subjects' lymphocytes with KINDLIN3 complementary DNA but not CALDAGGEF1 cDNA reverses the LAD-III defect, restoring integrin-mediated adhesion and migration.


Assuntos
Antígenos CD18/metabolismo , Síndrome da Aderência Leucocítica Deficitária/genética , Proteínas de Membrana/fisiologia , Mutação , Proteínas de Neoplasias/fisiologia , Sequência de Bases , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
PLoS Genet ; 4(12): e1000289, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057668

RESUMO

Kindler Syndrome (KS), characterized by transient skin blistering followed by abnormal pigmentation, skin atrophy, and skin cancer, is caused by mutations in the FERMT1 gene. Although a few KS patients have been reported to also develop ulcerative colitis (UC), a causal link to the FERMT1 gene mutation is unknown. The FERMT1 gene product belongs to a family of focal adhesion proteins (Kindlin-1, -2, -3) that bind several beta integrin cytoplasmic domains. Here, we show that deleting Kindlin-1 in mice gives rise to skin atrophy and an intestinal epithelial dysfunction with similarities to human UC. This intestinal dysfunction results in perinatal lethality and is triggered by defective intestinal epithelial cell integrin activation, leading to detachment of this barrier followed by a destructive inflammatory response.


Assuntos
Proteínas de Transporte/genética , Epitélio/fisiopatologia , Técnicas de Inativação de Genes , Intestinos/fisiopatologia , Dermatopatias Genéticas/metabolismo , Dermatopatias Genéticas/mortalidade , Pele/patologia , Animais , Animais Recém-Nascidos , Atrofia/metabolismo , Atrofia/mortalidade , Atrofia/fisiopatologia , Proteínas de Transporte/metabolismo , Adesão Celular , Linhagem Celular , Colite Ulcerativa/metabolismo , Colite Ulcerativa/mortalidade , Colite Ulcerativa/patologia , Colite Ulcerativa/fisiopatologia , Epitélio/metabolismo , Epitélio/patologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos , Camundongos Knockout , Pele/metabolismo , Pele/fisiopatologia , Dermatopatias Genéticas/patologia , Dermatopatias Genéticas/fisiopatologia
14.
Exp Cell Res ; 312(16): 3142-51, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16876785

RESUMO

The three Kindlins are a novel family of focal adhesion proteins. The Kindlin-1 (URP1) gene is mutated in Kindler syndrome, the first skin blistering disease affecting actin attachment in basal keratinocytes. Kindlin-2 (Mig-2), the best studied member of this family, binds ILK and Migfilin, which links Kindlin-2 to the actin cytoskeleton. Kindlin-3 is expressed in hematopoietic cells. Here we describe the genomic organization, gene expression and subcellular localization of murine Kindlins-1 to -3. In situ hybridizations showed that Kindlin-1 is preferentially expressed in epithelia, and Kindlin-2 in striated and smooth muscle cells. Kindlins-1 and -2 are both expressed in the epidermis. While both localize to integrin-mediated adhesion sites in cultured keratinocytes Kindlin-2, but not Kindlin-1, colocalizes with E-cadherin to cell-cell contacts in differentiated keratinocytes. Using a Kindlin-3-specific antiserum and an EGFP-tagged Kindlin-3 construct, we could show that Kindlin-3 is present in the F-actin surrounding ring structure of podosomes, which are specialized adhesion structures of hematopoietic cells.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Desenvolvimento Embrionário/genética , Animais , Adesão Celular , Moléculas de Adesão Celular/química , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Sistema Hematopoético/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Biol Chem ; 279(42): 43861-9, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15284233

RESUMO

The ERK cascade is activated by hormones, cytokines, and growth factors that result in either proliferation or growth arrest depending on the duration and intensity of the ERK activation. Here we provide evidence that the MEK1/ERK module preferentially provides proliferative signals, whereas the MEK2/ERK module induces growth arrest at the G1/S boundary. Depletion of either MEK subtype by RNA interference generated a unique phenotype. The MEK1 knock down led to p21cip1 induction and to the appearance of cells with a senescence-like phenotype. Permanent ablation of MEK1 resulted in reduced colony formation potential, indicating the importance of MEK1 for long term proliferation and survival. MEK2 deficiency, in contrast, was accompanied by a massive induction of cyclin D expression and, thus, CDK4/6 activation followed by nucleophosmin hyperphosphorylation and centrosome over-amplification. Our results suggest that the two MEK subtypes have distinct ways to contribute to a regulated ERK activity and cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Fase G1/fisiologia , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Fase S/fisiologia , Sequência de Bases , Quinases relacionadas a CDC2 e CDC28/metabolismo , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Células Clonais , Ensaio de Unidades Formadoras de Colônias , Ciclina D , Quinase 2 Dependente de Ciclina , Ciclinas/genética , Primers do DNA , Ativação Enzimática , Humanos , MAP Quinase Quinase 2/deficiência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA