Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L628-L637, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697929

RESUMO

Antenatal steroid therapy is the standard of care for women at imminent risk of preterm delivery. Current dosing regimens use suprapharmacological doses to achieve extended fetal steroid exposures. We aimed to determine the lowest fetal plasma betamethasone concentration sufficient to achieve functional preterm lung maturation. Ewes with single fetuses underwent surgery to install a fetal jugular catheter. Adopting a stepwise design, ewes were randomized to either a saline-only group (negative control group; n = 9) or one of four betamethasone treatment groups. Each betamethasone group fetus received a fetal intravenous infusion to target a constant plasma betamethasone level of either 1) 2 ng/mL (2 ng/mL positive control group, n = 9); 2) 1 ng/mL, (1 ng/mL group, n = 10); 3) 0.5 ng/mL (0.5 ng/mL group, n = 10); or 4) 0.25 ng/mL (0.25 ng/mL group, n = 10). Fetuses were infused for 48 h, delivered, and ventilated. The positive control group, negative control group, and mid-point 0.5 ng/mL group animals were tested first. An interim analysis informed the final betamethasone group tested. Positive control group animals had large, statistically significant improvements in respiratory function. Based on an interim analysis, the 1.0 ng/mL group was studied in favor of the 0.25 ng/mL group. Treatment efficacy was progressively lost at plasma betamethasone concentrations lower than 2 ng/mL. We demonstrated that the acute respiratory benefit conveyed by antenatal steroid exposure in the fetal sheep is progressively lost when constant fetal plasma betamethasone concentrations are reduced below a targeted value of 2 ng/mL.NEW & NOTEWORTHY Lung maturation benefits in preterm lambs were progressively lost when fetal plasma betamethasone concentrations fell below 2 ng/mL. The effective floor threshold for a robust, lung-maturing exposure likely lies between 1 and 2 ng betamethasone per milliliter of plasma. Hypothalamic pituitary adrenal axis signaling and immunocyte populations remained materially disrupted at subtherapeutic steroid concentrations. These data demonstrate the potential to improve antenatal steroid therapy using reduced dose regimens informed by glucocorticoid pharmacokinetics and pharmacodynamics.

2.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L853-L865, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438005

RESUMO

Antenatal steroids (ANSs) are routinely administered to women judged to be at imminent risk of preterm delivery. Their principal benefit is precocious functional maturation of the preterm fetal lung. Current dosing regimens expose the mother and fetus to high steroid levels that may be unnecessary, increasing the potential risks of disruption to the maternal and fetal hypothalamic-pituitary-adrenal (HPA) axis and glucose regulation, alterations in placental function, and reduced fetal growth. Using a sheep model of pregnancy, we tested the hypothesis that direct fetal administration of an ultra-low dose course of betamethasone phosphate (∼0.33 mg) would be sufficient to elicit functional maturation of the fetal lung. A jugular catheter was installed in singleton ovine fetuses at 122-day gestation under general anesthesia. Animals were randomized to receive either: 1) fetal intravenous betamethasone phosphate to target fetal plasma betamethasone mean levels of 2 ng/mL for 26 h (fetal treatment group; n = 16); 2) fetal intravenous saline for 26 h and two maternal intramuscular injections of 0.25 mg/kg betamethasone phosphate + betamethasone acetate, simulating a standard clinical treatment (maternal treatment group; n = 12); or 3) fetal intravenous saline only for 26 h (negative control group; n = 10). Fetuses were delivered 48 h after surgery, ventilated for 30 min to allow the collection of lung function and physiological data, and euthanized. Quantitative PCR and Western blots were used to assess markers of lung maturation. The average total betamethasone phosphate dose for the fetal treatment group was 1% (0.3 mg) of the maternal treatment group (31-mg betamethasone phosphate + betamethasone acetate). At 30 min of ventilation, arterial [Formula: see text], pH, heart rate, and ventilation efficacy index (VEI) were significantly (P < 0.05) and equivalently improved in both the fetal treatment group and maternal treatment group, relative to the negative control group. Similarly, SP-A, SP-C, and AQ-5 mRNA expression was significantly higher in both the fetal treatment group and maternal treatment group, relative to negative control. Maternal steroid administration was not required to generate preterm fetal lung maturation in sheep. Using a low dose and targeting steroid treatments directly to the fetus has the potential to significantly reduce maternal exposures, while simultaneously reducing the potential risk of adverse outcomes associated with current clinical dosing regimens.


Assuntos
Maturidade dos Órgãos Fetais , Glucocorticoides , Animais , Betametasona/farmacologia , Feminino , Feto , Glucocorticoides/farmacologia , Humanos , Pulmão/metabolismo , Placenta , Gravidez , Ovinos
3.
PLoS One ; 16(9): e0257847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559862

RESUMO

BACKGROUND: Intraamniotic inflammation is associated with up to 40% of preterm births, most notably in deliveries occurring prior to 32 weeks' gestation. Despite this, there are few treatment options allowing the prevention of preterm birth and associated fetal injury. Recent studies have shown that the small, non-competitive allosteric interleukin (IL)-1 receptor inhibitor, rytvela, may be of use in resolving inflammation associated with preterm birth (PTB) and fetal injury. We aimed to use an extremely preterm sheep model of chorioamnionitis to investigate the anti-inflammatory efficacy of rytvela in response to established intra-amniotic (IA) lipopolysaccharide (LPS) exposure. We hypothesized that rytvela would reduce LPS-induced IA inflammation in amniotic fluid (AF) and fetal tissues. METHODS: Sheep with a single fetus at 95 days gestation (estimated fetal weight 1.0 kg) had surgery to place fetal jugular and IA catheters. Animals were recovered for 48 hours before being randomized to either: i) IA administration of 2 ml saline 24 hours before 2 ml IA and 2 ml fetal intravenous (IV) administration of saline (Saline Group, n = 7); ii) IA administration of 10 mg LPS in 2 ml saline 24 hours before 2 ml IA and 2 ml fetal IV saline (LPS Group, n = 10); 3) IA administration of 10 mg LPS in 2 ml saline 24 hours before 0.3 mg/fetal kg IA and 1 mg/fetal kg fetal IV rytvela in 2 ml saline, respectively (LPS + rytvela Group, n = 7). Serial AF samples were collected for 120 h. Inflammatory responses were characterized by quantitative polymerase chain reaction (qPCR), histology, fluorescent immunohistochemistry, enzyme-linked inmmunosorbent assay (ELISA), fluorescent western blotting and blood chemistry analysis. RESULTS: LPS-treated animals had endotoxin and AF monocyte chemoattractant protein (MCP)-1 concentrations that were significantly higher at 24 hours (immediately prior to rytvela administration) relative to values from Saline Group animals. Following rytvela administration, the average MCP-1 concentrations in the AF were significantly lower in the LPS + rytvela Group relative to in the LPS Group. In delivery samples, the expression of IL-1ß in fetal skin was significantly lower in the LPS + rytvela Group compared to the LPS Group. CONCLUSION: A single dose of rytvela was associated with partial, modest inhibition in the expression of a panel of cytokines/chemokines in fetal tissues undergoing an active inflammatory response.


Assuntos
Anti-Inflamatórios/administração & dosagem , Corioamnionite/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Peptídeos/administração & dosagem , Administração Intravenosa , Animais , Anti-Inflamatórios/farmacologia , Corioamnionite/induzido quimicamente , Corioamnionite/imunologia , Modelos Animais de Doenças , Feminino , Idade Gestacional , Humanos , Peptídeos/farmacologia , Gravidez , Nascimento Prematuro , Distribuição Aleatória , Ovinos , Resultado do Tratamento
4.
Front Med (Lausanne) ; 8: 614239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693012

RESUMO

Perinatal inflammatory stress is strongly associated with adverse pulmonary outcomes after preterm birth. Antenatal infections are an essential perinatal stress factor and contribute to preterm delivery, induction of lung inflammation and injury, pre-disposing preterm infants to bronchopulmonary dysplasia. Considering the polymicrobial nature of antenatal infection, which was reported to result in diverse effects and outcomes in preterm lungs, the aim was to examine the consequences of sequential inflammatory stimuli on endogenous epithelial stem/progenitor cells and vascular maturation, which are crucial drivers of lung development. Therefore, a translational ovine model of antenatal infection/inflammation with consecutive exposures to chronic and acute stimuli was used. Ovine fetuses were exposed intra-amniotically to Ureaplasma parvum 42 days (chronic stimulus) and/or to lipopolysaccharide 2 or 7 days (acute stimulus) prior to preterm delivery at 125 days of gestation. Pulmonary inflammation, endogenous epithelial stem cell populations, vascular modulators and morphology were investigated in preterm lungs. Pre-exposure to UP attenuated neutrophil infiltration in 7d LPS-exposed lungs and prevented reduction of SOX-9 expression and increased SP-B expression, which could indicate protective responses induced by re-exposure. Sequential exposures did not markedly impact stem/progenitors of the proximal airways (P63+ basal cells) compared to single exposure to LPS. In contrast, the alveolar size was increased solely in the UP+7d LPS group. In line, the most pronounced reduction of AEC2 and proliferating cells (Ki67+) was detected in these sequentially UP + 7d LPS-exposed lambs. A similar sensitization effect of UP pre-exposure was reflected by the vessel density and expression of vascular markers VEGFR-2 and Ang-1 that were significantly reduced after UP exposure prior to 2d LPS, when compared to UP and LPS exposure alone. Strikingly, while morphological changes of alveoli and vessels were seen after sequential microbial exposure, improved lung function was observed in UP, 7d LPS, and UP+7d LPS-exposed lambs. In conclusion, although sequential exposures did not markedly further impact epithelial stem/progenitor cell populations, re-exposure to an inflammatory stimulus resulted in disturbed alveolarization and abnormal pulmonary vascular development. Whether these negative effects on lung development can be rescued by the potentially protective responses observed, should be examined at later time points.

5.
Pediatr Res ; 90(3): 549-558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33070161

RESUMO

BACKGROUND: Chorioamnionitis, an intrauterine infection of the placenta and fetal membranes, is a common risk factor for adverse pulmonary outcomes in premature infants including BPD, which is characterized by an arrest in alveolar development. As endogenous epithelial stem/progenitor cells are crucial for organogenesis and tissue repair, we examined whether intrauterine inflammation negatively affects these essential progenitor pools. METHODS: In an ovine chorioamnionitis model, fetuses were intra-amniotically exposed to LPS, 2d or 7d (acute inflammation) before preterm delivery at 125d of gestation, or to intra-amniotic Ureaplasma parvum for 42d (chronic inflammation). Lung function, pulmonary endogenous epithelial stem/progenitor pools, and downstream functional markers were studied. RESULTS: Lung function was improved in the 7d LPS and 42d Ureaplasma groups. However, intrauterine inflammation caused a loss of P63+ basal cells in proximal airways and reduced SOX-9 expression and TTF-1+ Club cells in distal airways. Attenuated type-2 cell numbers were associated with lower proliferation and reduced type-1 cell marker Aqp5 expression, indicative for impaired progenitor function. Chronic Ureaplasma infection only affected distal airways, whereas acute inflammation affected stem/progenitor populations throughout the lungs. CONCLUSIONS: Acute and chronic prenatal inflammation improve lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. IMPACT: In this study, prenatal inflammation improved lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. Importantly, we demonstrate that these essential alterations can already be initiated before birth. So far, stem/progenitor dysfunction has only been shown postnatally. This study indicates that clinical protocols to target the consequences of perinatal inflammatory stress for the immature lungs should be initiated as early as possible and ideally in utero. Within this context, our data suggest that interventions, which promote function or repair of endogenous stem cells in the lungs, hold great promise.


Assuntos
Corioamnionite/patologia , Pulmão/patologia , Células-Tronco/patologia , Animais , Células Epiteliais/patologia , Feminino , Gravidez , Nascimento Prematuro , Ovinos
6.
Reprod Sci ; 28(4): 1175-1184, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33237519

RESUMO

Recent studies, using magnetic resonance imaging (MRI) to assess white matter injury in preterm brains, increasingly recognize punctate white matter lesions (PWML) as the primary lesion type. There are some papers showing the relationship between the size and number of PWML and the prognosis of infants. However, the histopathological features are still unknown. In this study, we experimentally induced periventricular leukomalacia (PVL) in a sheep fetus model, aiming to find whether MRI can visualize necrotic foci (small incipient lesions of PVL) as PWML. Three antenatal insults were employed to induce PVL in preterm fetuses at gestational day 101-117: (i) hypoxia under intrauterine inflammation, (ii) restriction of artificial placental blood flow, and (iii) restriction of artificial placental blood flow after exposure to intrauterine inflammation. MRI was performed 3-5 days after the insults, and standard histological studies of the PVL validated its findings. Of the 89 necrotic foci detected in histological samples from nine fetuses with PVL, 78 were visualized as PWML. Four of the lesions detected as abnormal findings on MRI could not be histologically detected as corresponding abnormal findings. The diagnostic sensitivity and positive predictive values of histologic focal necrosis visualized as PWML were 0.92 and 0.95, respectively. The four lesions were excluded from these analyses. These data suggest that MRI can visualize PVL necrotic foci as PWML 3-5 days after the injury induction. PWML can spontaneously become obscure with time after birth, so their accurate diagnosis in the acute phase can prevent overlooking mild PVL.


Assuntos
Leucoencefalopatias/diagnóstico por imagem , Leucomalácia Periventricular/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Gravidez , Sensibilidade e Especificidade , Ovinos
7.
Am J Obstet Gynecol ; 223(6): 921.e1-921.e10, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32445634

RESUMO

BACKGROUND: Administration of antenatal steroids is standard of care for women assessed to be at imminent risk of preterm delivery. There is a marked variation in antenatal steroid dosing strategy, selection for treatment criteria, and agent choice worldwide. This, combined with very limited optimization of antenatal steroid use per se, means that treatment efficacy is highly variable, and the rate of respiratory distress syndrome is decreased to perhaps as low as 40%. In some cases, antenatal steroid use is associated with limited benefit and potential harm. OBJECTIVE: We hypothesized that individual differences in maternofetal steroid exposure would contribute to observed variability in antenatal steroid treatment efficacy. Using a chronically catheterized sheep model of pregnancy, we aimed to explore the relationship between maternofetal steroid exposure and antenatal steroid treatment efficacy as determined by functional lung maturation in preterm lambs undergoing ventilation. STUDY DESIGN: Ewes carrying a single fetus underwent surgery to catheterize a fetal and maternal jugular vein at 119 days' gestation. Animals recovered for 24 hours before being randomized to either (1) a single maternal intramuscular injection of 2 mL saline (negative control group, n=10) or (2) a single maternal intramuscular injection of 0.25 mg/kg betamethasone phosphate plus acetate (antenatal steroid group, n=20). Serial maternal and fetal plasma samples were collected from each animal after 48 hours before fetuses were delivered and ventilated for 30 minutes. Total and free plasma betamethasone concentration was measured by mass spectrometry. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction. RESULTS: One animal from the control group and one animal from the antenatal steroid group did not complete their treatment protocol and were removed from analyses. Animals in the antenatal steroid group were divided into a responder subgroup (n=12/19) and a nonresponder subgroup (n=7/19) using a cutoff of partial pressure of arterial CO2 at 30-minute ventilation within 2 standard deviations of the mean value from saline-treated negative control group animals. Although antenatal steroid improved fetal lung maturation in the undivided antenatal steroid group and in the responder subgroup both physiologically (blood gas- and ventilation-related data) and biochemically (messenger ribonucleic acid expression related to fetal lung maturation), these values did not improve relative to saline-treated control group animals in the antenatal steroid nonresponder subgroup. No differences in betamethasone distribution, clearance, or protein binding were identified between the antenatal steroid responder and nonresponder subgroups. CONCLUSION: This study correlated individual maternofetal steroid exposures with preterm lung maturation as determined by pulmonary ventilation. Herein, approximately 40% of preterm lambs exposed to antenatal steroids had lung maturation that was not significantly different to saline-treated control group animals. These nonresponsive animals received maternal and fetal betamethasone exposures identical to animals that had a significant improvement in functional lung maturation. These data suggest that the efficacy of antenatal steroid therapy is not solely determined by maternofetal drug levels and that individual fetal or maternal factors may play a role in determining treatment outcomes in response to glucocorticoid signaling.


Assuntos
Betametasona/análogos & derivados , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Animais , Aquaporina 1/efeitos dos fármacos , Aquaporina 1/genética , Aquaporina 5/efeitos dos fármacos , Aquaporina 5/genética , Betametasona/sangue , Betametasona/farmacologia , Gasometria , Dióxido de Carbono , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Feminino , Maturidade dos Órgãos Fetais/genética , Glucocorticoides/sangue , Pulmão/metabolismo , Pulmão/fisiopatologia , Complacência Pulmonar/efeitos dos fármacos , Espectrometria de Massas , Troca Materno-Fetal , Pressão Parcial , Assistência Perinatal , Reação em Cadeia da Polimerase , Gravidez , Nascimento Prematuro , Cuidado Pré-Natal , Proteína A Associada a Surfactante Pulmonar/efeitos dos fármacos , Proteína A Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/efeitos dos fármacos , Proteína B Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/efeitos dos fármacos , Proteína C Associada a Surfactante Pulmonar/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Respiração Artificial , Ovinos
8.
Am J Obstet Gynecol ; 223(5): 755.e1-755.e20, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32380175

RESUMO

BACKGROUND: Ex vivo uterine environment therapy is an experimental intensive care strategy for extremely preterm infants born between 21 and 24 weeks of gestation. Gas exchange is performed by membranous oxygenators connected by catheters to the umbilical vessels. The fetus is submerged in a bath of synthetic amniotic fluid. The lungs remain fluid filled, and pulmonary respiration does not occur. Intrauterine inflammation is strongly associated with extremely preterm birth and fetal injury. At present, there are no data that we are aware of to show that artificial placenta-based systems can be used to support extremely preterm fetuses compromised by exposure to intrauterine inflammation. OBJECTIVE: To evaluate the ability of our ex vivo uterine environment therapy platform to support extremely preterm ovine fetuses (95-day gestational age; approximately equivalent to 24 weeks of human gestation) exposed to intrauterine inflammation for a period of 120 hours, the following primary endpoints were chosen: (1) maintenance of key physiological variables within normal ranges, (2) absence of infection and inflammation, (3) absence of brain injury, and (4) gross fetal growth and cardiovascular function matching that of age-matched in utero controls. STUDY DESIGN: Ten ewes with singleton pregnancies were each given a single intraamniotic injection of 10-mg Escherichia coli lipopolysaccharides under ultrasound guidance 48 hours before undergoing surgical delivery for adaptation to ex vivo uterine environment therapy at 95-day gestation (term=150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with constant monitoring of key vital parameters (ex vivo uterine environment group) before being killed at 100-day equivalent gestational age. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, biochemical parameters, inflammatory markers, and microbial load to exclude infection. Ultrasound was conducted at 48 hours after intraamniotic lipopolysaccharides (before surgery) to confirm fetal viability and at the conclusion of the experiments (before euthanasia) to evaluate cardiac function. Brain injury was evaluated by gross anatomic and histopathologic investigations. Eight singleton pregnant control animals were similarly exposed to intraamniotic lipopolysaccharides at 93-day gestation and were killed at 100-day gestation to allow comparative postmortem analyses (control group). Biobanked samples from age-matched saline-treated animals served as an additional comparison group. Successful instillation of lipopolysaccharides into the amniotic fluid exposure was confirmed by amniotic fluid analysis at the time of administration and by analyzing cytokine levels in fetal plasma and amniotic fluid. Data were tested for mean differences using analysis of variance. RESULTS: Six of 8 lipopolysaccharide control group (75%) and 8 of 10 ex vivo uterine environment group fetuses (80%) successfully completed their protocols. Six of 8 ex vivo uterine environment group fetuses required dexamethasone phosphate treatment to manage profound refractory hypotension. Weight and crown-rump length were reduced in ex vivo uterine environment group fetuses at euthanasia than those in lipopolysaccharide control group fetuses (P<.05). There were no biologically significant differences in cardiac ultrasound measurement, differential leukocyte counts (P>.05), plasma tumor necrosis factor α, monocyte chemoattractant protein-1 concentrations (P>.05), or liver function tests between groups. Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment group animals. No cases of intraventricular hemorrhage were observed. White matter injury was identified in 3 of 6 lipopolysaccharide control group fetuses and 3 of 8 vivo uterine environment group fetuses. CONCLUSION: We report the use of an artificial placenta-based system to support extremely preterm lambs compromised by exposure to intrauterine inflammation. Our data highlight key challenges (refractory hypotension, growth restriction, and white matter injury) to be overcome in the development and use of artificial placenta technology for extremely preterm infants. As such challenges seem largely absent from studies based on healthy pregnancies, additional experiments of this nature using clinically relevant model systems are essential for further development of this technology and its eventual clinical application.


Assuntos
Órgãos Artificiais , Hemorragia Cerebral Intraventricular/patologia , Citocinas/imunologia , Desenvolvimento Fetal , Feto/imunologia , Inflamação/imunologia , Leucomalácia Periventricular/patologia , Cuidados para Prolongar a Vida/métodos , Placenta , Âmnio , Líquido Amniótico/imunologia , Animais , Gasometria , Quimiocina CCL2/imunologia , Estatura Cabeça-Cóccix , Modelos Animais de Doenças , Feminino , Feto/patologia , Idade Gestacional , Humanos , Lactente Extremamente Prematuro , Recém-Nascido , Inflamação/induzido quimicamente , Inflamação/patologia , Injeções , Contagem de Leucócitos , Lipopolissacarídeos/toxicidade , Gravidez , Ovinos , Carneiro Doméstico , Fator de Necrose Tumoral alfa/imunologia , Artérias Umbilicais
9.
Pediatr Int ; 62(6): 688-693, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31916650

RESUMO

BACKGROUND: Arginine vasopressin (AVP) infusion has been shown to be a useful strategy for the management of systemic perfusion failure in premature infants. Our objective was to determine the characteristics of the blood flow redistribution induced by AVP infusion in premature fetal sheep. METHODS: Nine sheep fetuses at 99 to 113 days of gestation were continuously infused with AVP. Measurement of blood flow to individual fetal organs was performed using a colored microsphere technique, with measurements performed at 30 min before and 90 min after the initiation of AVP infusions. RESULTS: The AVP infusion significantly increased blood flow to the medulla oblongata (P < 0.05), and significantly decreased flow to the adrenal glands (from 492.0 ± 239.6 to 364.9 ± 143.3 mL/min/100 g, P < 0.05) and heart (from 592.6 ± 184.5 to 435.6 ± 137.4 mL/min/100 g, P < 0.05). The infusion significantly increased the vascular resistance in adrenal glands, kidneys, ileum, colon, heart, and cerebellum. In the brain, except for the cerebellum, no significant increase in resistance was identified. CONCLUSIONS: There was no significant response to AVP infusion in cerebral blood flow in mid-gestation fetal sheep. Our observations suggest that, under AVP stimulation, the blood flow to the adrenal glands and myocardium might be decreased due to an increase in vascular resistance.


Assuntos
Arginina Vasopressina/farmacologia , Feto/efeitos dos fármacos , Hemostáticos/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Glândulas Suprarrenais/irrigação sanguínea , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Vasos Coronários/efeitos dos fármacos , Feminino , Sangue Fetal/efeitos dos fármacos , Bulbo/irrigação sanguínea , Bulbo/efeitos dos fármacos , Gravidez , Ovinos , Resistência Vascular/efeitos dos fármacos
10.
Am J Obstet Gynecol ; 221(1): 69.e1-69.e17, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30853365

RESUMO

BACKGROUND: Ex vivo uterine environment therapy is an experimental life support platform designed to reduce the risk of morbidity and mortality for extremely preterm infants born at the border of viability (21-24 weeks' gestation). To spare the functionally immature lung, this platform performs gas exchange via a membranous oxygenator connected to the umbilical vessels, and the fetus is submerged in a protective bath of artificial amniotic fluid. We and others have demonstrated the feasibility of extended survival with ex vivo uterine environment therapy therapy in late preterm fetuses; however, there is presently no evidence to show that the use of such a platform can support extremely preterm fetuses, the eventual translational target for therapy of this nature. OBJECTIVE: The objective of the study was to use our ex vivo uterine environment therapy platform to support the healthy maintenance of 600-700 g/95 days gestational age (equivalent to 24 weeks of human gestation) sheep fetuses. Primary outcome measures were as follows: (1) maintenance of key physiological variables; (2) absence of infection; (3) absence of brain injury; and (4) growth and cardiovascular function patterns matching that of noninstrumented, age-matched in utero controls. STUDY DESIGN: Singleton fetuses from 8 ewes underwent surgical delivery at 95 days' gestation (term, 150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with real-time monitoring of key physiological variables. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, inflammation, and microbial load to exclude infection. Brain injury was evaluated by gross anatomical and histopathological approaches after euthanasia. Nine pregnant control animals were euthanized at 100 days' gestation to allow comparative postmortem analyses. Data were tested for mean differences with an analysis of variance. RESULTS: Seven of 8 ex vivo uterine environment group fetuses (87.5%) completed 120 hours of therapy with key parameters maintained in a normal physiological range. There were no significant intergroup differences (P > .05) in final weight, crown-rump length, and body weight-normalized lung and brain weights at euthanasia compared with controls. There were no biologically significant differences in hematological parameters (total or differential leucocyte counts and plasma concentration of tumor necrosis factor-α and monocyte chemoattractant protein 1) (P > .05). Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment animals. There was no difference in airspace consolidation between control and ex vivo uterine environment animals, and there was no increase in the number of lung cells staining positive for the T-cell marker CD3. There were no increases in interleukin-1, interleukin-6, interleukin-8, tumor necrosis factor-α, and monocyte chemoattractant protein 1 mRNA expression in lung tissues compared with the control group. No cases of intraventricular hemorrhage were observed, and white matter injury was identified in only 1 ex vivo uterine environment fetus. CONCLUSION: For several decades, there has been little improvement in outcomes of extremely preterm infants born at the border of viability. In the present study, we report the use of artificial placenta technology to support, for the first time, extremely preterm ovine fetuses (equivalent to 24 weeks of human gestation) in a stable, growth-normal state for 120 hours. With additional refinement, the data generated by this study may inform a treatment option to improve outcomes for extremely preterm infants.


Assuntos
Órgãos Artificiais , Citocinas/genética , Desenvolvimento Fetal , Placenta , Nascimento Prematuro , Animais , Hemocultura , Gasometria , Encéfalo/crescimento & desenvolvimento , Quimiocina CCL2 , Contagem de Colônia Microbiana , Estatura Cabeça-Cóccix , Citocinas/metabolismo , Feminino , Viabilidade Fetal , Peso Fetal , Idade Gestacional , Infecções/epidemiologia , Inflamação/epidemiologia , Inflamação/genética , Inflamação/metabolismo , Contagem de Leucócitos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Tamanho do Órgão , Gravidez , RNA Mensageiro/metabolismo , Ovinos , Carneiro Doméstico , Fator de Necrose Tumoral alfa , Artérias Umbilicais
11.
PLoS One ; 13(7): e0200713, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30005089

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is important for airway branching and lung maturation. Mechanical ventilation of preterm lambs causes increases in EGFR and EGFR ligand mRNA in the lung. Abnormal EGFR signaling may contribute to the development of bronchopulmonary dysplasia. HYPOTHESIS: Inhibition of EGFR signaling will decrease airway epithelial cell proliferation and lung inflammation caused by mechanical ventilation in preterm, fetal sheep. METHODS: Following exposure of the fetal head and chest at 123±1 day gestational age and with placental circulation intact, fetal lambs (n = 4-6/group) were randomized to either: 1) Gefitinib 15 mg IV and 1 mg intra-tracheal or 2) saline IV and IT. Lambs were further assigned to 15 minutes of either: a) Injurious mechanical ventilation (MV) or b) Continuous positive airway pressure (CPAP) 5 cmH2O. After the 15 minute intervention, the animals were returned to the uterus and delivered after i) 6 or ii) 24 hours in utero. RESULTS: MV caused lung injury and inflammation, increased lung mRNA for cytokines and EGFR ligands, caused airway epithelial cell proliferation, and decreased airway epithelial phosphorylated ERK1/2. Responses to MV were unchanged by Gefitinib. Gefitinib altered expression of EGFR mRNA in the lung and liver of both CPAP and MV animals. Gefitinib decreased the liver SAA3 mRNA response to MV at 6 hours. There were no differences in markers of lung injury or inflammation between CPAP animals receiving Gefitinib or saline. CONCLUSION: Inhibition of the EGFR pathway did not alter acute lung inflammation or injury from mechanical ventilation in preterm sheep.


Assuntos
Displasia Broncopulmonar/patologia , Receptores ErbB/antagonistas & inibidores , Desenvolvimento Fetal/efeitos dos fármacos , Gefitinibe/uso terapêutico , Pulmão/crescimento & desenvolvimento , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Família de Proteínas EGF/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Receptores ErbB/fisiologia , Feminino , Gefitinibe/farmacologia , Humanos , Pulmão/citologia , Pulmão/patologia , Gravidez , Inibidores de Proteínas Quinases/farmacologia , Respiração Artificial/efeitos adversos , Carneiro Doméstico , Resultado do Tratamento
12.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L193-L201, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29671605

RESUMO

Mechanical ventilation causes lung injury and systemic inflammatory responses in preterm sheep and is associated with bronchopulmonary dysplasia (BPD) in preterm infants. Budesonide added to surfactant decreased BPD by 20% in infants. We wanted to determine the effects of budesonide and surfactant on injury from high tidal volume (VT) ventilation in preterm lambs. Ewes at 125 ± 1 days gestational age had fetal surgery to expose fetal head and chest with placental circulation intact. Lambs were randomized to 1) mechanical ventilation with escalating VT to target 15 ml/kg by 15 min or 2) continuous positive airway pressure (CPAP) of 5 cmH2O. After the 15-min intervention, lambs were given surfactant 100 mg/kg with saline, budesonide 0.25 mg/kg, or budesonide 1 mg/kg. The fetuses were returned to the uterus for 24 h and then delivered and ventilated for 30 min to assess lung function. Budesonide levels were low in lung and plasma. CPAP groups had improved oxygenation, ventilation, and decreased injury markers compared with fetal VT lambs. Budesonide improved ventilation in CPAP lambs. Budesonide decreased lung weights and lung liquid and increased lung compliance and surfactant protein mRNA. Budesonide decreased proinflammatory and acute-phase responses in lung. Airway thickness increased in animals not receiving budesonide. Systemically, budesonide decreased monocyte chemoattractant protein-1 mRNA and preserved glycogen in liver. Results with 0.25 and 1 mg/kg budesonide were similar. We concluded that budesonide with surfactant matured the preterm lung and decreased the liver responses but did not improve lung function after high VT injury in fetal sheep.


Assuntos
Displasia Broncopulmonar , Budesonida , Feto , Nascimento Prematuro/terapia , Surfactantes Pulmonares , Animais , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/fisiopatologia , Displasia Broncopulmonar/terapia , Budesonida/farmacocinética , Budesonida/farmacologia , Feminino , Feto/metabolismo , Feto/patologia , Feto/fisiopatologia , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Gravidez , Nascimento Prematuro/metabolismo , Nascimento Prematuro/patologia , Nascimento Prematuro/fisiopatologia , Surfactantes Pulmonares/farmacocinética , Surfactantes Pulmonares/farmacologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Ovinos
13.
Vet Anaesth Analg ; 44(6): 1382-1390, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29174960

RESUMO

OBJECTIVE: To evaluate the maternal and foetal uptake of transdermal fentanyl patch applied to the groin of pregnant sheep following surgery. STUDY DESIGN: Prospective series. ANIMALS: A group of 16 singleton pregnant sheep underwent anaesthesia for laparotomy, hysterotomy and instrumentation of the foetus. Of these ewes 10 (101 ± 12 days of gestation) were used to evaluate the maternal uptake of transdermal fentanyl, and the efficacy of the drug in the postoperative period (n = 10). To determine the extent of transplacental transfer of fentanyl, six ewes from the group of 10, and six other ewes (92 ± 1 days' gestation) were studied. METHODS: A 75 µg hour-1 fentanyl patch was placed onto the woolless skin of the medial thigh close to the groin at the end of surgery. Maternal blood samples were collected from the cephalic or jugular vein, and pain and sedation scores were determined, prior to application of the patch (time 0) and at 3, 6, 12, 24, 36 and 48 hours after. A commercial Fentanyl ELISA kit was used to determine the concentration of fentanyl. Paired maternal and foetal blood samples were collected 48 hours after surgery. Animals were euthanized at the end of the study. Data were tested for normality and compared with Student t test or one-way anova and are expressed as mean ± standard deviation or median (range). RESULTS: Recovery from anaesthesia and surgery was uneventful in all ewes. The dose of fentanyl was 1.4 ± 0.2 µg kg-1 hour-1. The maximum maternal plasma concentration of fentanyl was 0.547 ng mL-1 (range, 0.349-0.738 ng mL-1) at 12 hours. After 48 hours, the concentration of fentanyl was 0.381 ng mL-1 (range, 0.211-0.487 ng mL-1; maternal) and 0.295 ng mL-1 (range, 0.185-0.377 ng mL-1; foetal; p = 0.175). The placental transfer rate of fentanyl was 77%. CONCLUSIONS AND CLINICAL RELEVANCE: The uptake of fentanyl varied between animals. The placental transfer rate of fentanyl was 77%.


Assuntos
Analgésicos Opioides/farmacocinética , Fentanila/farmacocinética , Administração Cutânea , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/sangue , Animais , Feminino , Fentanila/administração & dosagem , Fentanila/sangue , Virilha , Troca Materno-Fetal , Medição da Dor/veterinária , Gravidez/metabolismo , Ovinos/cirurgia
14.
Artif Organs ; 41(10): 959-968, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28891072

RESUMO

Ex vivo uterine environment (EVE) therapy is an experimental neonatal intensive care strategy wherein gas exchange is performed by membranous oxygenators attached to the umbilical vessels. Our aim was to assess the ability of a newly refined EVE system to maintain key physiological parameters in preterm lambs within optimal ranges for 48 h. EVE group; n = 6: Preterm lambs were delivered under general anesthesia at 115 ± 2 days of gestational age. Animals were submerged in a bath of artificial amniotic fluid on EVE therapy for 48 h. Physiological parameters were monitored in real-time over the length of the experiment. Control group; n = 11: Ewes carrying a single fetus (115 ± 2 days of gestational age) underwent recovery surgery to allow placement of a fetal carotid artery catheter. Fetuses received an infusion of sterile saline only. After euthanasia, EVE and Control group fetuses underwent necroscopy to perform static pressure-volume curves and for sampling of lung and cord blood plasma for molecular analyses. Five out of six fetuses in the EVE group completed the study period with key physiological variables remaining within their respective reference ranges for the duration of the 48 h study. Bacteremia was identified in four out of five EVE fetuses, and was associated with a systemic inflammatory response. Using our refined EVE therapy platform, preterm lambs were maintained in a stable physiological condition for 48 h. These findings represent a significant advance over earlier work with this system; however, the identification of bacteremia and a fetal inflammatory response suggests that further refinement to the EVE therapy platform is required.


Assuntos
Oxigenação por Membrana Extracorpórea/instrumentação , Sangue Fetal/fisiologia , Feto/irrigação sanguínea , Feto/fisiologia , Oxigenadores de Membrana , Nascimento Prematuro/veterinária , Animais , Animais Recém-Nascidos , Bacteriemia/complicações , Feminino , Inflamação/complicações , Gravidez , Nascimento Prematuro/terapia , Ovinos , Carneiro Doméstico , Cordão Umbilical/fisiologia
15.
Am J Obstet Gynecol ; 215(6): 775.e1-775.e12, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27555319

RESUMO

BACKGROUND: Antenatal steroids are standard of care for cases of anticipated preterm labor to improve neonatal outcomes. However, steroids are potent drugs, and their use in pregnancy remains largely unoptimized. OBJECTIVE: The objective of the study was to measure the maternofetal pharmacokinetics of constant, low-dose intravenous betamethasone phosphate infusions and correlate these data with the transcriptional effect exerted by subclinical betamethasone exposures on the ovine fetal lung. STUDY DESIGN: Thirty-two ewes carrying a single fetus had surgery to catheterize fetal and maternal jugular veins at 116 days of gestation (term, 150 days). Animals were recovered for 2 days and then were randomized to receive 2 sequential maternal intravenous infusions of either (n = 4/group) of the following: 1) saline, 0.125, 0.04, or 0.0125 mg/kg betamethasone phosphate over 3 hours; or 2) saline, 0.25, 0.08, or 0.025 mg/kg betamethasone phosphate over 12 hours. Each infusion was separated by 2 days. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction and an ovine-specific microarray. Plasma betamethasone levels from time-course catheter samples were determined by mass spectrometry. Data were assessed for distribution, variance, and tested by an analysis of variance. RESULTS: Betamethasone was detectable (>1 ng/mL) in fetal plasma only in animals randomized to 0.125 mg/kg 3 hour or 0.250 mg/kg 12 hour infusions. Fetal betamethasone half-lives were 1.7-2.8 times greater than maternal values. At maximum concentration, fetal plasma betamethasone levels were approximately 10% of maternal levels. Compared with saline control, all animals, other than those receiving 0.0125 mg/kg 3 hour betamethasone phosphate infusions, had evidence of dose-dependent glucocorticoid transcriptional responses in the fetal lung. CONCLUSION: Constant maternal betamethasone infusions delivering substantially lower fetal and maternal betamethasone maximal concentrations than those achieved with current clinical treatment protocols were associated with dose-dependent changes in glucocorticoid-response markers in the fetal lung. Further studies to determine the minimally efficacious dose of steroids for improving outcomes in preterm infants should be viewed as a priority.


Assuntos
Betametasona/análogos & derivados , Sangue Fetal/metabolismo , Feto/metabolismo , Glucocorticoides/farmacocinética , Pulmão/metabolismo , Animais , Betametasona/farmacocinética , Feminino , Infusões Intravenosas , Gravidez , Distribuição Aleatória , Ovinos , Carneiro Doméstico
16.
Am J Obstet Gynecol ; 214(2): 281.e1-281.e10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26408085

RESUMO

BACKGROUND: The preterm birth syndrome (delivery before 37 weeks gestation) is a major contributor to the global burden of perinatal morbidity and death. The cause of preterm birth is complex, multifactorial, and likely dependent, at least in part, on the gestational age of the fetus. Intrauterine infection is frequent in preterm deliveries that occur at <32 weeks gestation; understanding how the fetus responds to proinflammatory insult will be an important step towards early preterm birth prevention. However, animal studies of infection and inflammation in prematurity commonly use older fetuses that possess comparatively mature immune systems. OBJECTIVE: Aiming to characterize acute fetal responses to microbial agonist at a clinically relevant gestation, we used 92-day-old fetuses (62% of term) to develop a chronically catheterized sheep model of very preterm pregnancy. We hypothesized that any acute fetal systemic inflammatory responses would be driven by signaling from the tissues exposed to Escherichia coli lipopolysaccharide that is introduced into the amniotic fluid. STUDY DESIGN: Eighteen ewes that were carrying a single fetus at 92 days of gestation had recovery surgery to place fetal tracheal, jugular, and intraamniotic catheters. Animals were recovered for 24 hours before being administered either intraamniotic E coli lipopolysaccharide (n = 9) or sterile saline solution (n = 9). Samples were collected for 48 hours before euthanasia and necroscopy. Fetal inflammatory responses were characterized by microarray analysis, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS: Intraamniotic lipopolysaccharide reached the distal trachea within 2 hours. Lipopolysaccharide increased tracheal fluid interleukin-8 within 2 hours and generated a robust inflammatory response that was characterized by interleukin-6 signaling pathway activation and up-regulation of cell proliferation but no increases in inflammatory mediator expression in cord blood RNA. CONCLUSIONS: In very preterm sheep fetuses, lipopolysaccharide stimulates inflammation in the fetal lung and fetal skin and stimulates a systemic inflammatory response that is not generated by fetal blood cells. These data argue for amniotic fluid-exposed tissues that play a key role in driving acute fetal and intrauterine inflammatory responses.


Assuntos
Citocinas/efeitos dos fármacos , Sangue Fetal/imunologia , Doenças Fetais/imunologia , Feto/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , RNA Mensageiro/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Líquido Amniótico , Animais , Cateterismo , Cateterismo Venoso Central , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL8/efeitos dos fármacos , Quimiocina CCL8/genética , Quimiocina CCL8/imunologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Feminino , Feto/imunologia , Inflamação , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/efeitos dos fármacos , Interleucina-8/genética , Interleucina-8/imunologia , Reação em Cadeia da Polimerase , Gravidez , RNA Mensageiro/imunologia , Ovinos , Análise Serial de Tecidos , Traqueia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA