Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37999844

RESUMO

The ever-growing consumption of herbs around the globe has motivated the researchers to acquire practical knowledge about other potential applications in human and animal health. In this research, an unmodified adsorbent prepared from the holoparasitic herb C. corymbosa was utilized for the removal of the carcinogen aflatoxin B1 (AFB1) from aqueous solutions. The adsorbent was characterized by Fourier transform near-infrared/mid-infrared spectrophotometry (FT-NIR/MIR), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray fluorescence spectroscopy (EDX), X-ray diffraction (XRD), and point of zero charge (pHpzc). Adsorption experiments were carried out in batch systems, and the experimental data was used for isothermal (Langmuir and Freundlich) and kinetic (linear and non-linear forms of the pseudo-first and pseudo-second order) models. In general, the unmodified adsorbent removed AFB1 independent of the solution pH, showing a theoretical adsorption capacity of 555.76 mg AFB1/g at 303 K, significantly higher than that reported for other plant-based adsorbents and comparable with the efficiency of various inorganic adsorbents. Non-electrostatic attractions such as hydrogen bonding and dispersion forces along with complexation mechanisms were the primary interactions responsible for the adsorption of the pollutant. Our results clearly show that C. corymbosa could be a promising material for practical adsorption applications in the drinking water industry.

2.
J Food Sci ; 88(12): 5164-5175, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876289

RESUMO

Cryostructured gels, better known as cryogels, are a very important emerging class of biomaterials that have diverse applications in food preservation. This work shows a novel alternative to prepare a cryostructured composite coating made from a blend of xanthan, bovine collagen, and oregano essential oil. The composite coating was suitably applied onto the surface of preservative-free biscuits which were stored for 15 days at 25 ± 2°C and 52% ± 1% relative humidity. The evaluation focused mainly on the changes in the physicochemical, textural, and microbiological characteristics of the biscuits. It was found that the coated samples significantly (p < 0.05) decreased moisture absorption, water activity, and fungal growth. However, the composite coating minimally impacted the quality of biscuits in terms of color, texture profile, and surface microstructure. Overall, the cryostructured composite coating constitutes an advance in technological strategies aimed at the preservation of baked products. This will allow, in the future, the development of novel coatings on bakery products to generate new trends in the conservation of their properties and extension of shelf life. This could be achieved through the implementation of new technologies in the food industry, with the aim of making them more environmentally friendly and contributing to the generation of less plastic waste. PRACTICAL APPLICATION: The study and application of cryogels, as innovative systems in the food industry, allow to expand and diversify the materials that can function as coatings to maintain some quality characteristics, in this case in bakery products, so it is important to analyze their effects and consider them to improve conservation processes.


Assuntos
Óleos Voláteis , Origanum , Animais , Bovinos , Óleos Voláteis/química , Origanum/química , México , Criogéis , Conservação de Alimentos
3.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682746

RESUMO

The coordination of one and two aflatoxin B1 (AFB1, a potent carcinogen) molecules with chlorophyll a (chl a) was studied at a theoretical level. Calculations were performed using the M06-2X method in conjunction with the 6-311G(d,p) basis set, in both gas and water phases. The molecular electrostatic potential map shows the chemical activity of various sites of the AFB1 and chl a molecules. The energy difference between molecular orbitals of AFB1 and chl a allowed for the establishment of an intermolecular interaction. A charge transfer from AFB1 to the central cation of chl a was shown. The energies of the optimized structures for chl a show two configurations, unfolded and folded, with a difference of 15.41 kcal/mol. Chl a appeared axially coordinated to the plane (α-down or ß-up) of the porphyrin moiety, either with the oxygen atom of the ketonic group, or with the oxygen atom of the lactone moiety of AFB1. The complexes of maximum stability were chl a 1-α-E-AFB1 and chl a 2-ß-E-AFB1, at -36.4 and -39.2 kcal/mol, respectively. Additionally, with two AFB1 molecules were chl a 1-D-2AFB1 and chl a 2-E-2AFB1, at -60.0 and -64.8 kcal/mol, respectively. Finally, biosorbents containing chlorophyll could improve AFB1 adsorption.


Assuntos
Aflatoxina B1 , Clorofila , Aflatoxina B1/química , Carcinógenos , Clorofila A , Oxigênio
4.
Toxins (Basel) ; 13(11)2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34822555

RESUMO

Adsorption of the carcinogen aflatoxin B1 (AFB1) onto agro-waste-based materials is a promising alternative over conventional inorganic binders. In the current study, two unmodified adsorbents were eco-friendly prepared from kale and lettuce agro-wastes. A dynamic gastrointestinal tract-simulated model was utilized to evaluate the removal efficiency of the sorptive materials (0.5%, w/w) when added to an AFB1-contaminated diet (100 µg AFB1/kg). Different characterization methodologies were employed to understand the interaction mechanisms between the AFB1 molecule and the biosorbents. Based on adsorption results, the biosorbent prepared from kale was the best; its maximum adsorption capacity was 93.6%, which was significantly higher than that of the lettuce biosorbent (83.7%). Characterization results indicate that different mechanisms may act simultaneously during adsorption. Non-electrostatic (hydrophobic interactions, dipole-dipole interactions, and hydrogen bonding) and electrostatic interactions (ionic attractions) together with the formation of AFB1-chlorophyll complexes appear to be the major influencing factors driving AFB1 biosorption.


Assuntos
Aflatoxina B1/metabolismo , Brassica/química , Carcinógenos/metabolismo , Trato Gastrointestinal/fisiologia , Lactuca/química , Adsorção , Animais , Modelos Biológicos
5.
Food Chem ; 345: 128863, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33340893

RESUMO

In vitro experiments were conducted to evaluate the effectiveness of two new biosorbents (lettuce and field horsetail) in removing aflatoxin B1 (AFB1). Formosa firethorn was used as reference material. The adsorption of AFB1 (190 ng/mL) was investigated at two sorbent contents (0.5% and 0.1% w/v) and three pHs (2, 5, and 7). Batch experiments were performed at 40 °C for 2 h. Several methodologies were used to characterize the nature of the biosorbent-AFB1 interaction. In general, when using biosorbents at 0.5% w/v, AFB1 was well adsorbed by the three tested biomaterials (70 to 100%). Furthermore, with the lowest biosorbent content (0.1% w/v), significant AFB1 adsorption efficiencies were attained at pH 5 (33 to 50%). Nevertheless, at pH 7, lettuce showed the highest ability against AFB1 removal (95%). Further characterization of the AFB1-loaded biosorbents demonstrated that chemical and physical mechanisms were involved in the adsorption process.


Assuntos
Aflatoxina B1/química , Aflatoxina B1/isolamento & purificação , Carcinógenos/química , Carcinógenos/isolamento & purificação , Equisetum/química , Lactuca/química , Adsorção , Biodegradação Ambiental , Contaminação de Alimentos/análise
6.
J Food Sci ; 79(5): T1024-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24689855

RESUMO

UNLABELLED: In vitro cytotoxicity and genotoxicity induction by aflatoxin B1 (AFB1) from maize (ME) and tortillas (TE) produced by microwave nixtamalization were investigated in monkey kidney (Vero cells) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione (GSH) depletion, and the Salmonella-microsomal screening system (Ames test). Our results showed that, at higher concentrations, both ME and TE extracts that contained varying amounts of aflatoxin caused a considerable decrease in Vero cell viability (up to 37%) after 4 h of exposure. Aflatoxins from ME induced greater oxidative damage by enhancing lipid peroxidation (up to 6.05 ± 0.14 µmol/mg protein) as compared to TE; however, TE also induced significant malondialdehyde formation in particular at the higher aflatoxin concentration tested (up to 2.7 ± 0.19 µmol/mg protein). The decrease in GSH level was also more pronounced in ME as compared to TE. Moreover, the Ames test results indicated that the mutagenic activity of TE was greatly reduced compared with that of ME based on his(-) → his(+) reversions in the Salmonella TA100 strain. According to these results, it is concluded that the microwave nixtamalization procedure reduced aflatoxins and their in vitro toxicity and mutagenic activity. PRACTICAL APPLICATION: In Mexico, aflatoxins are often found in maize destined for the tortilla industry; consequently, tortilla consumption invariably leads to an important intake of intact and/or modified aflatoxin molecules caused by the thermal-alkaline treatment used during production. Therefore, it is of the highest importance to check whether such intake has the potential to lead to higher risk for adverse human health effects. In view of these considerations, in vitro tests may thus be useful for predicting the potential cytotoxicity and genotoxicity of tortillas produced for human consumption using aflatoxin-contaminated maize.


Assuntos
Aflatoxina B1/efeitos adversos , Pão , Dano ao DNA , Manipulação de Alimentos/métodos , Micro-Ondas , Estresse Oxidativo , Zea mays , Aflatoxina B1/análise , Animais , Sobrevivência Celular , Chlorocebus aethiops , Culinária , Contaminação de Alimentos , Glutationa/metabolismo , Calefação , Temperatura Alta , Humanos , Peroxidação de Lipídeos , Malondialdeído/metabolismo , México , Mutagênicos/análise , Salmonella/efeitos dos fármacos , Salmonella/genética , Células Vero
7.
Iran J Public Health ; 43(2): 147-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26060737

RESUMO

BACKGROUND: Fumonisins (a family of foodborne carcinogenic mycotoxins) cause health hazards to humans and animals in developing countries, and has also economic implications. Therefore, the efficacy of a novel environmental friendly nixtamalization procedure to make tortillas (the main staple food for the Mexican population) was investigated. METHODS: Maize contaminated with 2136.67 ng/g total fumonisins was processed into tortillas, starting with maize grits mixed with water and calcium hydroxide that was cooked in a microwave field at 2.45 GHz during 3.75 min, and steeped 3.5 h at room temperature. The steeped maize grits (nixtamal) was stone-ground into masa (maize dough), which was then used to make tortillas. Total fumonisin content was determined using monoclonal antibody columns. RESULTS: Masa contained 1998.33 ng/g total fumonisins, which represents 6.5% toxin reduction. Nevertheless, fumonisin concentration was reduced significantly in tortillas (up to 985.33 ng/g) due to the cooking process, corresponding to a cumulative toxin degradation of 54%. Tortillas were below the maximum tolerated level, considering the European Union regulatory limit for fumonisins in maize (1000 ng/g). The physicochemical and technological properties of tortillas were also considered within the acceptable margins of quality. CONCLUSION: Microwave nixtamalization was not a feasible method to reduce fumonisin content in masa to acceptable levels; however, an effective extra-reduction occurred when masa was baking into tortillas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA