RESUMO
EGFR-mutant lung cancers develop a wide range of potential resistance alterations under therapy with the third-generation EGFR tyrosine kinase inhibitor osimertinib. MET amplification ranks among the most common acquired resistance alterations and is currently being investigated as a therapeutic target in several studies. Nevertheless, targeted therapy of MET might similarly result in acquired resistance by point mutations in MET, which further expands therapeutic and diagnostic challenges. Here, we report a 50-year-old male patient with EGFR-mutant lung adenocarcinoma and stepwise acquired resistance by a focal amplification of MET followed by D1246N (D1228N), D1246H (D1228H), and L1213V (L1195V) point mutations in MET, all detected by NGS. The patient successfully responded to the combined and sequential treatment of osimertinib, osimertinib/crizotinib, and third-line osimertinib/cabozantinib. This case highlights the importance of well-designed, sequential molecular diagnostic analyses and the personalized treatment of patients with acquired resistance.
Assuntos
Neoplasias Pulmonares , Humanos , Masculino , Pessoa de Meia-Idade , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genéticaRESUMO
The worldwide approval of the combination maintenance therapy of olaparib and bevacizumab in advanced high-grade serous ovarian cancer requires complex molecular diagnostic assays that are sufficiently robust for the routine detection of driver mutations in homologous recombination repair (HRR) genes and genomic instability (GI), employing formalin-fixed (FFPE) paraffin-embedded tumor samples without matched normal tissue. We therefore established a DNA-based hybrid capture NGS assay and an associated bioinformatic pipeline that fulfils our institution's specific needs. The assay´s target regions cover the full exonic territory of relevant cancer-related genes and HRR genes and more than 20,000 evenly distributed single nucleotide polymorphism (SNP) loci to allow for the detection of genome-wide allele specific copy number alterations (CNA). To determine GI status, we implemented an %CNA score that is robust across a broad range of tumor cell content (25-85%) often found in routine FFPE samples. The assay was established using high-grade serous ovarian cancer samples for which BRCA1 and BRCA2 mutation status as well as Myriad MyChoice homologous repair deficiency (HRD) status was known. The NOGGO (Northeastern German Society for Gynecologic Oncology) GIS (GI-Score) v1 assay was clinically validated on more than 400 samples of the ENGOT PAOLA-1 clinical trial as part of the European Network for Gynaecological Oncological Trial groups (ENGOT) HRD European Initiative. The "NOGGO GIS v1 assay" performed using highly robust hazard ratios for progression-free survival (PFS) and overall survival (OS), as well a significantly lower dropout rate than the Myriad MyChoice clinical trial assay supporting the clinical utility of the assay. We also provide proof of a modular and scalable routine diagnostic method, that can be flexibly adapted and adjusted to meet future clinical needs, emerging biomarkers, and further tumor entities.
RESUMO
Heterotopia is a brain malformation caused by a failed migration of cortical neurons during development. Clinical symptoms of heterotopia vary in severity of intellectual disability and may be associated with epileptic disorders. Abnormal neuronal migration is known to be associated with mutations in the doublecortin gene (DCX), the platelet-activating factor acetylhydrolase gene (PAFAH1B1), or tubulin alpha-1A gene (TUBA1A). Recently, a new gene encoding echinoderm microtubule-associated protein-like 1 (EML1) was reported to cause a particular form of subcortical heterotopia, the ribbon-like subcortical heterotopia (RSH). EML1 mutations are inherited in an autosomal recessive manner. Only six unrelated EML1-associated heterotopia-affected families were reported so far. The EML1 protein is a member of the microtubule-associated proteins family, playing an important role in microtubule assembly and stabilization as well as in mitotic spindle formation in interphase. Herein, we present a novel homozygous missense variant in EML1 (NM_004434.2: c.692G>A, NP_004425.2: p.Gly231Asp) identified in a male RSH-affected patient. Our clinical and molecular findings confirm the genotype-phenotype associations of EML1 mutations and RSH. Analyses of patient-derived fibroblasts showed the significantly reduced length of primary cilia. In addition, our results presented, that the mutated EML1 protein did not change binding capacities with tubulin. The data described herein will expand the mutation spectrum of the EML1 gene and provide further insight into molecular and cellular bases of the pathogenic mechanisms underlying RSH.