Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(12): 6253-6260, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489512

RESUMO

The redox behavior and chemisorption of cysteamine (CA) at a charged mercury surface are described, with an emphasis on its acid-base properties supported by molecular dynamics and quantum mechanical calculations. It was found that CA forms chemisorbed layers on the surface of the mercury electrode. The formation of Hg-CA complexes is connected to mercury disproportionation, as reflected in peaks SII and SI at potentials higher than the electrode potential of zero charge (p.z.c.). Both the process of chemisorption of CA and its consequent redox transformation are proton-dependent. Also, depending on the protonation of CA, the formation of typical populations of chemisorbed conformers can be observed. In addition, cystamine (CA disulfide dimer) can be reduced on the mercury surface. Between the potentials of this reduction and peak SI, the p.z.c. of the electrode used can be found. Furthermore, CA can serve as an LMW catalyst for hydrogen evolution. The mechanistic insights presented here can be used for follow-up research on CA chemisorption and targeted modification of other metallic surfaces.

2.
J Periodontal Res ; 59(3): 468-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38311974

RESUMO

OBJECTIVE: The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis. BACKGROUND: The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease. MATERIALS AND METHODS: Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A - no CBD, group B - with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD. RESULTS: Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 µg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days. CONCLUSIONS: Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.


Assuntos
Canabidiol , Fibroblastos , Gengiva , Gengivite , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Método Duplo-Cego , Fibroblastos/efeitos dos fármacos , Adulto , Masculino , Feminino , Gengiva/efeitos dos fármacos , Gengivite/tratamento farmacológico , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2 , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Clorexidina/uso terapêutico , Clorexidina/farmacologia , Clorexidina/análogos & derivados , Células Cultivadas , Interleucina-6/análise , Periodontite/tratamento farmacológico , Interleucina-8/efeitos dos fármacos , Heme Oxigenase-1
3.
Free Radic Biol Med ; 164: 381-389, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33429019

RESUMO

Covalent modifications of thiol and amine groups may control the function of proteins involved in the regulatory and signaling pathways of the cell. In this study, we developed a simple cysteamine assay which can be used to study the reactivity of electrophilic compounds towards primary amine and thiol groups in an aqueous environment. The detection principle is based on the electrochemical, photometrical and mass spectrometric analyses of cysteamine (2-aminoethanethiol) as the molecular probe. This technique is useful for studying the reaction kinetics of electrophiles with thiol (SH) and amino (NH2) groups. The decrease in analytical responses of cysteamine was monitored to evaluate the reactivity of three electrophilic activators of the Nrf2 pathway, which mediates the cellular stress response. The SH-reactivity under cell-free conditions of the tested electrophiles decreased in the following order: 4-hydroxy-2-nonenal ≥ nitro-oleic acid > sulforaphane. However, as shown in RAW264.7 cells, the tested compounds activated Nrf2-dependent gene expression in the opposite order: sulforaphane > nitro-oleic acid ≥ 4-hydroxy-2-nonenal. Although other factors in addition to chemical reactivity play a role in biological systems, we conclude that this cysteamine assay is a useful tool for screening potentially bioactive electrophiles and for studying their reactivity at a molecular level.


Assuntos
Cisteamina , Compostos de Sulfidrila , Cisteamina/farmacologia , Cinética , Espectrometria de Massas , Transdução de Sinais
4.
Redox Biol ; 38: 101756, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181478

RESUMO

Fatty acid nitroalkenes (NO2-FA) are endogenously-generated products of the reaction of metabolic and inflammatory-derived nitrogen dioxide (.NO2) with unsaturated fatty acids. These species mediate signaling actions and induce adaptive responses in preclinical models of inflammatory and metabolic diseases. The nitroalkene substituent possesses an electrophilic nature, resulting in rapid and reversible reactions with biological nucleophiles such as cysteine, thus supporting post-translational modifications (PTM) of proteins having susceptible nucleophilic centers. These reactions contribute to enzyme regulation, modulation of inflammation and cell proliferation and the regulation of gene expression responses. Herein, focus is placed on the reduction-oxidation (redox) characteristics and stability of specific NO2-FA regioisomers having biological and clinical relevance; nitro-oleic acid (NO2-OA), bis-allylic nitro-linoleic acid (NO2-LA) and the conjugated diene-containing nitro-conjugated linoleic acid (NO2-cLA). Cyclic and alternating-current voltammetry and chronopotentiometry were used to the study of reduction potentials of these NO2-FA. R-NO2 reduction was observed around -0.8 V (vs. Ag/AgCl/3 M KCl) and is related to relative NO2-FA electrophilicity. This reduction process could be utilized for the evaluation of NO2-FA stability in aqueous milieu, shown herein to be pH dependent. In addition, electron paramagnetic resonance (EPR) spectroscopy was used to define the stability of the nitroalkene moiety under aqueous conditions, specifically under conditions where nitric oxide (.NO) release could be detected. The experimental data were supported by density functional theory calculations using 6-311++G (d,p) basis set and B3LYP functional. Based on experimental and computational approaches, the relative electrophilicities of these NO2-FA are NO2-cLA >> NO2-LA > NO2-OA. Micellarization and vesiculation largely define these biophysical characteristics in aqueous, nucleophile-free conditions. At concentrations below the critical micellar concentration (CMC), monomeric NO2-FA predominate, while at greater concentrations a micellar phase consisting of self-assembled lipid structures predominates. The CMC, determined by dynamic light scattering in 0.1 M phosphate buffer (pH 7.4) at 25 °C, was 6.9 (NO2-LA) 10.6 (NO2-OA) and 42.3 µM (NO2-cLA), respectively. In aggregate, this study provides new insight into the biophysical properties of NO2-FA that are important for better understanding the cell signaling and pharmacological potential of this class of mediators.


Assuntos
Ácidos Graxos , Nitrocompostos , Alcenos , Óxido Nítrico , Oxirredução
5.
Free Radic Biol Med ; 143: 240-251, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381971

RESUMO

Quercetin is one of the most prominent and widely studied flavonoids. Its oxidation has been previously investigated only indirectly by comparative analyses of structurally analogous compounds, e.g. dihydroquercetin (taxifolin). To provide direct evidence about the mechanism of quercetin oxidation, we employed selective alkylation procedures for the step-by-step blocking of individual redox active sites, i.e. the catechol, resorcinol and enol C-3 hydroxyls, as represented by newly prepared quercetin derivatives 1-3. Based on the structure-activity relationship (SAR), electrochemical, and computational (density functional theory) studies, we can clearly confirm that quercetin is oxidized in the following steps: the catechol moiety is oxidized first, forming the benzofuranone derivative via intramolecular rearrangement mechanism; therefore the quercetin C-3 hydroxy group cannot be involved in further oxidation reactions or other biochemical processes. The benzofuranone is oxidized subsequently, followed by oxidation of the resorcinol motif to complete the electrochemical cascade of reactions. Derivatization of individual quercetin hydroxyls has a significant effect on its redox behavior, and, importantly, on its antiradical and stability properties, as shown in DPPH/ABTS radical scavenging assays and UV-Vis spectrophotometry, respectively. The SAR data reported here are instrumental for future studies on the oxidation of biologically or technologically important flavonoids and other polyphenols or polyhydroxy substituted aromatics. This is the first complete and direct study mapping redox properties of individual moieties in quercetin structure.


Assuntos
Antioxidantes/química , Sequestradores de Radicais Livres/química , Quercetina/química , Oxirredução , Relação Estrutura-Atividade
6.
Toxicol In Vitro ; 57: 105-109, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30822459

RESUMO

Carbohelicenes are a group of helical-shaped polycyclic aromatic hydrocarbons. This study examined the effect of hexahelicene (or [6]helicene) and of its imidazolium derivative, 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide (I[6]H), on the activity of the aryl hydrocarbon receptor (AhR) and expression of cytochrome P450 1A1 (CYP1A1) in human hepatoma HepG2 cells. An MTT viability assay showed that both [6]helicene and I[6]H were cytotoxic to HepG2 cells after 24 h of exposure, with IC50 values of 0.9 and 8.4 µM, respectively. Using a gene reporter assay performed in transiently transfected HepG2 cells, we found that 1 µM [6]helicene, unlike I[6]H, significantly increased the activity of AhR to 2.1-fold compared to the control after 24 h of exposure. Moreover, [6]helicene induced a small but significant increase in the level of CYP1A1 mRNA. On the other hand, neither the protein level nor activity of CYP1A1 were affected by [6]helicene in HepG2 cells. The effect of [6]helicene on the AhR pathway was thus much lower than that of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent AhR activator. We conclude that [6]helicene is a poor activator of the AhR pathway in HepG2 cells, and that the possible activation of the AhR pathway in vivo remains to be investigated.


Assuntos
Imidazóis/toxicidade , Compostos Policíclicos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células Hep G2 , Humanos , Transdução de Sinais/efeitos dos fármacos
7.
Langmuir ; 34(24): 6997-7005, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29763545

RESUMO

Molecular wires are functional molecules applicable in the field of transfer processes in technological and biochemical applications. Besides molecular wires with the ability to transfer electrons, research is currently focused on molecular wires with high proton affinity and proton transfer ability. Recently, proposed peptidic proton wires (H wires) are one example. Their ability to mediate the transport of protons from aqueous solutions onto the surface of a Hg electrode in a catalytic hydrogen evolution reaction was investigated by constant-current chronopotentiometric stripping. However, elucidating the structure of H wires and rationalizing their stability are key requirements for their further research and application. In this article, we focus on the His (H) and Ala (A)-containing peptidic H wire A3-(H-A2)6 in solution and after its immobilization onto the electrode surface in the presence of the secondary structure stabilizer 2,2,2-trifluoroethanol (TFE). We found that the solvent containing more than 25% of TFE stabilizes the helical structure of A3-(H-A2)6 not only in solution but also in the adsorbed state. The TFE efficacy to stabilize α-helical structure was confirmed using high-resolution nuclear magnetic resonance, circular dichroism, and molecular dynamics simulation. Experimental and theoretical results indicated A3-(H-A2)6 to be a high proton-affinity peptidic H wire with an α-helical structure stabilized by TFE, which was confirmed in a comparative study with hexahistidine as an example of a peptide with a definitely disordered and random coil structure. The results presented here could be used for further investigation of the peptidic H wires and for the application of electrochemical methods in the research of proton transfer phenomena in general.


Assuntos
Técnicas Eletroquímicas/métodos , Histidina/química , Prótons , Dicroísmo Circular , Técnicas Eletroquímicas/instrumentação , Eletrodos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Solventes/química , Trifluoretanol/química
8.
Biosens Bioelectron ; 100: 437-444, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28961546

RESUMO

The lipidic liquid-crystalline cubic phase (LCP) is a membrane-mimetic material useful for the stabilization and structural analysis of membrane proteins. Here, we focused on the incorporation of the membrane ATP-hydrolysing sodium/potassium transporter Na+/K+-ATPase (NKA) into a monoolein-derived LCP. Small-angle X-ray scattering was employed for the determination of the LCP structure, which was of Pn3m symmetry for all the formulations studied. The fully characterized NKA-LCP material was immobilized onto a glassy carbon electrode, forming a highly stable enzyme electrode and a novel sensing platform. A typical NKA voltammetric signature was monitored via the anodic reaction of tyrosine and tryptophan residues. The in situ enzyme activity evaluation was based on the ability of NKA to transform ATP to ADP and free phosphate, the latter reacting with ammonium molybdate to form the ammonium phosphomolybdate complex under acidic conditions. The square-wave voltammetric detection of phosphomolybdate was performed and complemented with spectrophotometric measurement at 710nm. The anodic voltammetric response, corresponding to the catalytic ATP-hydrolysing function of NKA incorporated into the LCP, was monitored at around + 0.2V vs. Ag/AgCl in the presence or absence of ouabain, a specific NKA inhibitor. NKA incorporated into the LCP retained its ATP-hydrolysing activity for 7 days, while the solubilized protein became practically inactive. The novelty of this work is the first incorporation of NKA into a lipidic cubic phase with consequent enzyme functionality and stability evaluation using voltammetric detection. The application of LCPs could also be important in the further development of new membrane protein electrochemical sensors and enzyme electrodes.


Assuntos
Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais/métodos , Glicerídeos/química , Cristais Líquidos/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Suínos
10.
Free Radic Biol Med ; 108: 146-154, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342847

RESUMO

Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16µM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the ß-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Rim/metabolismo , Aldeído Pirúvico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Bovinos , Cristalografia por Raios X , Produtos Finais de Glicação Avançada/química , Guanidinas/farmacologia , Espectrometria de Massas , Ouabaína/farmacologia , Estresse Oxidativo , Ligação Proteica , Conformação Proteica , Aldeído Pirúvico/química , Soroalbumina Bovina/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Sus scrofa
11.
Eur J Med Chem ; 127: 263-274, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28068598

RESUMO

A series of antioxidants was designed and synthesized based on conjugation of the hepatoprotective flavonolignan silybin with l-ascorbic acid, trolox alcohol or tyrosol via a C12 aliphatic linker. These hybrid molecules were prepared from 12-vinyl dodecanedioate-23-O-silybin using the enzymatic regioselective acylation procedure with Novozym 435 (lipase B) or with lipase PS. Voltammetric analyses showed that the silybin-ascorbic acid conjugate exhibited excellent electron donating ability, in comparison to the other conjugates. Free radical scavenging, antioxidant activities and cytoprotective action were evaluated. The silybin-ascorbic acid hybrid exhibited the best activities (IC50 = 30.2 µM) in terms of lipid peroxidation inhibition. The promising protective action of the conjugate against lipid peroxidation can be attributed to modulated electron transfer abilities of both the silybin and ascorbate moieties, but also to the hydrophobic C12 linker facilitating membrane insertion. This was supported experimentally and theoretically by density functional theory (DFT) and molecular dynamics (MD) calculations. The results presented here can be used in the further development of novel multipotent antioxidants and cytoprotective agents, in particular for substances acting at an aqueous/lipid interface.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Flavonolignanos/química , Flavonolignanos/farmacologia , Lipase/metabolismo , Antioxidantes/metabolismo , Membrana Celular/metabolismo , Citoproteção/efeitos dos fármacos , Transporte de Elétrons , Enzimas Imobilizadas , Flavonolignanos/metabolismo , Proteínas Fúngicas , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Silibina , Silimarina/química
12.
Chem Biol Interact ; 260: 58-66, 2016 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-27777014

RESUMO

The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Quercetina/farmacologia , Animais , Biotransformação/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Genes Reporter , Heme Oxigenase-1/biossíntese , Humanos , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quercetina/síntese química , Quercetina/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Anal Chem ; 88(8): 4548-56, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26980181

RESUMO

The development of new methods and strategies for the investigation of membrane proteins is limited by poor solubility of these proteins in an aqueous environment and hindered by a number of other problems linked to the instability of the proteins outside lipid bilayers. Therefore, current research focuses on an analysis of membrane proteins incorporated into model lipid membrane, most frequently liposomes. In this work, we introduce a new electrochemical methodology for the analysis of transmembrane proteins reconstituted into a liposomal system. The proposed analytical approach is based on proteoliposomal sample adsorption on the surface of working electrodes followed by analysis of the anodic and cathodic signals of the reconstituted proteins. It works based on the fact that proteins are electroactive species, in contrast to the lipid components of the membranes under the given experimental conditions. Electroanalytical experiments were performed with two transmembrane proteins; the Na(+)/K(+)ATPase that contains transmembrane as well as large extramembraneous segments and the mitochondrial uncoupling protein 1, which is a transmembrane protein essentially lacking extramembraneous segments. Electrochemical analyses of proteoliposomes were compared with analyses of both proteins solubilized with detergents (C12E8 and octyl-PoE) and supported by the following complementary methods: microscopy techniques, protein activity testing, molecular model visualizations, and immunochemical identification of both proteins. The label-free electrochemical platform presented here enables studies of reconstituted transmembrane proteins at the nanomolar level. Our results may contribute to the development of new electrochemical sensors and microarray systems applicable within the field of poorly water-soluble proteins.


Assuntos
Técnicas Eletroquímicas , Lipossomos/química , ATPase Trocadora de Sódio-Potássio/análise , Proteína Desacopladora 1/análise , Humanos , Lipossomos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteína Desacopladora 1/metabolismo
14.
Ecotoxicol Environ Saf ; 124: 177-185, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26519817

RESUMO

The production of cytotoxic molecules interfering with mammalian cells is extensively reported in cyanobacteria. These compounds may have a use in pharmacological applications; however, their potential toxicity needs to be considered. We performed cytotoxicity tests of crude cyanobacterial extracts in six cell models in order to address the frequency of cyanobacterial cytotoxicity to human cells and the level of specificity to a particular cell line. A set of more than 100 cyanobacterial crude extracts isolated from soil habitats (mainly genera Nostoc and Tolypothrix) was tested by MTT test for in vitro toxicity on the hepatic and non-hepatic human cell lines HepG2 and HeLa, and three cell systems of rodent origin: Yac-1, Sp-2 and Balb/c 3T3 fibroblasts. Furthermore, a subset of the extracts was assessed for cytotoxicity against primary cultures of human hepatocytes as a model for evaluating potential hepatotoxicity. Roughly one third of cyanobacterial extracts caused cytotoxic effects (i.e. viability<75%) on human cell lines. Despite the sensitivity differences, high correlation coefficients among the inhibition values were obtained for particular cell systems. This suggests a prevailing general cytotoxic effect of extracts and their constituents. The non-transformed immortalized fibroblasts (Balb/c 3T3) and hepatic cancer line HepG2 exhibited good correlations with primary cultures of human hepatocytes. The presence of cytotoxic fractions in strongly cytotoxic extracts was confirmed by an activity-guided HPLC fractionation, and it was demonstrated that cyanobacterial cytotoxicity is caused by a mixture of components with similar hydrophobic/hydrophilic properties. The data presented here could be used in further research into in vitro testing based on human models for the toxicological monitoring of complex cyanobacterial samples.


Assuntos
Misturas Complexas/toxicidade , Cianobactérias/química , Citotoxinas/análise , Animais , Células 3T3 BALB , Linhagem Celular , Fibroblastos , Células HeLa , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Sais de Tetrazólio , Tiazóis
15.
Free Radic Biol Med ; 90: 114-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26582372

RESUMO

The protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated. Namely, Folin-Ciocalteau reduction, DPPH and ABTS(+) radical scavenging, inhibition of microsomal lipid peroxidation and cytoprotective effects against tert-butyl hydroperoxide-induced damage to a human hepatocellular carcinoma HepG2 cell line were evaluated. Due to the presence of the highly reactive C3-OH group and the C-2,3 double bond (ring C) allowing electron delocalization across the whole structure in the 2,3-dehydroderivatives, these compounds are much more easily oxidized than the corresponding flavonolignans SB, SCH and SD. This finding was unequivocally confirmed not only by experimental approaches, but also by density functional theory (DFT) calculations. The hierarchy in terms of ability to undergo electrochemical oxidation (DHSCH~DHSD>DHSB>>SCH/SD>SB) was consistent with their antiradical activities, mainly DPPH scavenging, as well as in vitro cytoprotection of HepG2 cells. The results are discussed in the context of the antioxidant vs. prooxidant activities of flavonolignans and molecular interactions in complex biological systems.


Assuntos
Antioxidantes/farmacologia , Citoproteção , Flavonolignanos/farmacologia , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Flavonolignanos/química , Células Hep G2 , Humanos , Masculino , Ratos , Silibina , Silimarina/farmacologia , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 23(17): 5402-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26260337

RESUMO

Quercetin 3'-O-sulfate is one of the main metabolites of the natural flavonoid quercetin in humans. This study was designed to prepare quercetin 3'-O-sulfate (1), isoquercitrin 4'-O-sulfate (2) and taxifolin 4'-O-sulfate (3) by the sulfation of quercetin, isoquercitrin (quercetin 3-O-glucoside) and taxifolin (2,3-dihydroquercetin) using the arylsulfate sulfotransferase from Desulfitobacterium hafniense, and to examine the effect of sulfation on selected biological properties of the flavonoids tested. We found that flavonoid sulfates 1-3 were weaker DPPH radical scavengers than the corresponding nonsulfated flavonoids, and that 1-3, unlike quercetin, did not induce the expression of either heme oxygenase-1 in RAW264.7 cells or cytochrome P450 1A1 in HepG2 cells. In both cell types, the cell uptake of compounds 1-3 was much lower than that of quercetin, but comparable to that of the glycoside isoquercitrin. Moreover, HPLC/MS metabolic profiling in HepG2 cells showed that flavonoid sulfates 1-3 were metabolized to a limited extent compared to the nonsulfated compounds. We conclude that sulfation of the tested flavonoids reduces their antiradical activity, and affects their cell uptake and biological activity in vitro.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Quercetina/análogos & derivados , Animais , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacocinética , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Células Hep G2 , Humanos , Camundongos , Quercetina/química , Quercetina/metabolismo , Quercetina/farmacocinética , Quercetina/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-24781046

RESUMO

AIMS: Cisplatin is a widely used chemotherapeutic. However, it is associated with numerous adverse effects. The aim of our study was examination of cisplatin interaction with Na(+)/K(+)-ATPase (NKA, the sodium pump). This enzyme is of crucial importance for all animal cells and particularly for the kidney, which is frequently damaged during chemotherapy. METHODS: The entire NKA was isolated from porcine kidney. Its large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45), was heterologously expressed in E.coli (wild-type or C367S mutant). The ATPase activity was evaluated according to the inorganic phosphate production and the interaction of isolated C45 with cisplatin was studied using chronopotentiometry and mass spectrometry. RESULTS: Our experiments revealed that cisplatin can inhibit NKA. The finding that other platinum-based drugs with a low nephrotoxicity, carboplatin and oxaliplatin, did not inhibit NKA, suggested that NKA/cisplatin interaction is an important factor in cisplatin adverse effects. The inhibitory effect of cisplatin could be prevented by preincubation of the enzyme with reduced glutathione or DTT. Using chronopotentiometry and mass spectrometry, we found that cisplatin is bound to C45. However, our mutagenesis experiment did not confirm that the suggested Cys367 could be the binding site for cisplatin. CONCLUSION: Unintended interactions of drugs present serious limitations to treatment success. Although a large number of membrane pumps have been identified as potential targets of cisplatin, vis-a-vis nephrotoxicity, NKA inhibition seems to be of crucial importance. Experiments with isolated large cytoplasmic segment C45 revealed that it is the main target of cisplatin on NKA and that the reaction with cysteine residues plays an important role in cisplatin/NKA interactions. However, further experiments must be performed to identify the interacting amino acid residues more precisely.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Rim/enzimologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Cisplatino/efeitos adversos , Cisplatino/química , ATPase Trocadora de Sódio-Potássio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos
18.
Molecules ; 19(4): 4115-34, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699152

RESUMO

Divalent or multivalent molecules often show enhanced biological activity relative to the simple monomeric units. Here we present enzymatically and chemically prepared dimers of the flavonolignans silybin and 2,3-dehydrosilybin. Their electrochemical behavior was studied by in situ and ex situ square wave voltammetry. The oxidation of monomers and dimers was similar, but adsorption onto the electrode and cell surfaces was different. A 1,1-diphenyl-2-picrylhydrazyl (DPPH) and an inhibition of microsomal lipoperoxidation assay were performed with same trend of results for silybin and 2,3-dehydrosilybin dimers. Silybin dimer showed better activity than the monomer, while on the contrary 2,3-dehydrosilybin dimer presented weaker antioxidant/antilipoperoxidant activity than its monomer. Cytotoxicity was evaluated on human umbilical vein endothelial cells, normal human adult keratinocytes, mouse fibroblasts (BALB/c 3T3) and human liver hepatocellular carcinoma cell line (HepG2). Silybin dimer was more cytotoxic than the parent compound and in the case of 2,3-dehydrosilybin its dimer showed weaker cytotoxicity than the monomer.


Assuntos
Sequestradores de Radicais Livres/síntese química , Silimarina/síntese química , Animais , Biocatálise , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Proteínas Fúngicas/química , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Lipase/química , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Oxirredução , Picratos/antagonistas & inibidores , Ratos , Silibina , Silimarina/farmacologia
19.
J Pharm Biomed Anal ; 86: 135-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24008144

RESUMO

Galloyl esters of quercetin and taxifolin have been recently prepared semisynthetically as part of work towards modifying the solubility and modulating the biological activity of these natural flavonoids. In this paper we focused on the liquid chromatography-mass spectrometry (LC-MS) profiling of metabolites of 3-O-galloylquercetin and 7-O-galloyltaxifolin using human hepatocytes as the in vitro cell model. A subtoxic concentration (50µM) was used for both compounds and the formation of metabolites was monitored for 2h in hepatocytes and cultivation medium separately. Using negative electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QqTOF MS), we identified different biotransformation patterns for the studied compounds. 3-O-Galloylquercetin is metabolized directly to glucuronides and methyl derivatives. In contrast, 7-O-galloyltaxifolin is oxidized to 7-O-galloylquercetin or cleaved to taxifolin, and consequently the products formed are sulfated or glucuronidated. The oxidative biotransformation of 3-O-galloylquercetin and 7-O-galloyltaxifolin is also accompanied by ester bond cleavage presumably by cellular enzymes (esterases) in a nonspecific manner. Our results provide fundamental insights into the biotransformation of monogalloyl esters of flavonoids and can be applied in investigations of the pharmaceutical potential of other galloylated polyphenolic substances.


Assuntos
Ácido Gálico/toxicidade , Hepatócitos/efeitos dos fármacos , Quercetina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Adolescente , Animais , Biotransformação , Células Cultivadas , Cromatografia Líquida/métodos , Ésteres , Feminino , Ácido Gálico/química , Ácido Gálico/farmacocinética , Hepatócitos/metabolismo , Humanos , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Células NIH 3T3 , Quercetina/química , Quercetina/farmacocinética , Quercetina/toxicidade
20.
Chem Biol Interact ; 205(3): 173-80, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23872255

RESUMO

Besides the well-known chemoprotective effects of polyphenols, their prooxidant activities via interactions with biomacromolecules as DNA and proteins are of the utmost importance. Current research focuses not only on natural polyphenols but also on synthetically prepared analogs with promising biological activities. In the present study, the antioxidant and prooxidant properties of a semi-synthetic flavonolignan 7-O-galloylsilybin (7-GSB) are described. The presence of the galloyl moiety significantly enhances the antioxidant capacity of 7-GSB compared to that of silybin (SB). These findings were supported by electrochemistry, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, total antioxidant capacity (CL-TAC) and DFT (density functional theory) calculations. A three-step oxidation mechanism of 7-GSB is proposed at pH 7.4, in which the galloyl moiety is first oxidized at Ep,1=+0.20V (vs. Ag/AgCl3M KCl) followed by oxidation of the 20-OH (Ep,2=+0.55V) and most probably 5-OH (Ep,3=+0.95V) group of SB moiety. The molecular orbital analysis and the calculation of O-H bond dissociation enthalpies (BDE) fully rationalize the electrooxidation processes. The metal (Cu(2+)) complexation of 7-GSB was studied, which appeared to involve both the galloyl moiety and the 5-OH group. The prooxidant effects of the metal-complexes were then studied according to their capacity to oxidatively induce DNA modification and cleavage. These results paved the way towards the conclusion that 7-O-galloyl substitution to SB concomitantly (i) enhances antioxidant (ROS scavenging) capacity and (ii) decreases prooxidant effect/DNA damage after Cu complexation. This multidisciplinary approach provides a comprehensive mechanistic picture of the antioxidant vs. metal-induced prooxidant effects of flavonolignans at the molecular level, under ex vivo conditions.


Assuntos
Antioxidantes/farmacologia , Cobre/metabolismo , Dano ao DNA , Silimarina/análogos & derivados , Antioxidantes/química , Antioxidantes/metabolismo , Compostos de Bifenilo/metabolismo , Técnicas Eletroquímicas , Medições Luminescentes , Simulação de Dinâmica Molecular , Picratos/metabolismo , Silimarina/química , Silimarina/metabolismo , Silimarina/farmacologia , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA