Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38197946

RESUMO

Innate lymphoid cells (ILCs) are a heterogeneous population of lymphocytes that coordinate early immune responses and maintain tissue homeostasis. Type 1 innate immune responses are mediated by natural killer (NK) cells and group 1 ILCs (ILC1s). Despite their shared features, NK cells and ILC1s display profound differences among various tissue microenvironments. Here, we identify the inositol polyphosphatase INPP4B as a hallmark feature of tissue-resident ILC1s and intratumoral NK cells using an scRNA-seq atlas of tissue-associated and circulating NK/ILC1s. Conditional deletion of Inpp4b in ILC1s and NK cells reveals that it is necessary for the homeostasis of tissue-resident ILC1s but not circulating NK cells at steady-state. Inpp4b-deficient cells display increased rates of apoptosis and reduced activation of the prosurvival molecule AKT. Furthermore, expression of Inpp4b by NK/ILC1s is necessary for their presence in the intratumoral environment, and lack of Inpp4b impairs antitumor immunity. These findings highlight INPP4B as a novel regulator of tissue residency and antitumor function in ILC1s and NK cells.


Assuntos
Imunidade Inata , Proteínas Proto-Oncogênicas c-akt , Células Matadoras Naturais , Homeostase
2.
Front Endocrinol (Lausanne) ; 13: 997745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187089

RESUMO

Catecholamine signaling is known to influence bone tissue as reuptake of norepinephrine released from sympathetic nerves into bone cells declines with age leading to osteoporosis. Further, ß-adrenoceptor-blockers like propranolol provoke osteoprotective effects in osteoporotic patients. However, besides systemic adrenal and sympathetic catecholamine production, it is also known that myeloid cells can synthesize catecholamines, especially under inflammatory conditions. To investigate the effects of catecholamines produced by CD11b+ myeloid cells on bone turnover and regeneration, a mouse line with specific knockout of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine synthesis, in CD11b+ myeloid cells (THflox/flox/CD11b-Cre+, referred to as THCD11b-Cre) was generated. For bone phenotyping, male mice were sacrificed at eight and twelve weeks of age and harvested bones were subjected to bone length measurement, micro-computed tomography, fluorescence-activated cell sorting of the bone marrow, gene expression analysis, histology and immunohistochemistry. Support for an age-dependent influence of myeloid cell-derived catecholamines on bone homeostasis is provided by the fact that twelve-week-old, but not eight-week-old THCD11b-Cre mice, developed an osteopenic phenotype and showed increased numbers of neutrophils and T lymphocytes in the bone marrow, while CCL2, IL-6, IL-4 and IL-10 mRNA expression was reduced in sorted myeloid bone marrow cells. To investigate the influence of myeloid cell-derived catecholamines on fracture healing, mice received a diaphyseal femur osteotomy. Three days post-fracture, immunohistochemistry revealed an increased number of macrophages, neutrophils and cytotoxic T lymphocytes in the fracture hematoma of THCD11b-Cre mice. Micro-computed tomography on day 21 showed a decreased tissue mineral density, a reduced bone volume and less trabeculae in the fracture callus indicating delayed fracture healing, probably due to the increased presence of inflammatory cells in THCD11b-Cre mice. This indicates a crucial role of myeloid cell-derived catecholamines in immune cell-bone cell crosstalk and during fracture healing.


Assuntos
Catecolaminas , Fraturas Ósseas , Animais , Remodelação Óssea , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Catecolaminas/metabolismo , Fraturas Ósseas/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6 , Macrófagos , Masculino , Camundongos , Norepinefrina , Propranolol , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/metabolismo , Tirosina 3-Mono-Oxigenase , Microtomografia por Raio-X
3.
J Biol Chem ; 298(8): 102187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760104

RESUMO

Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.


Assuntos
Fibroblastos , Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética
4.
Commun Biol ; 4(1): 416, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772116

RESUMO

A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.


Assuntos
Síndrome Metabólica/terapia , Monoéster Fosfórico Hidrolases/genética , Substâncias Protetoras/farmacologia , Transdução de Sinais , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia
5.
Genesis ; 59(3): e23409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484096

RESUMO

Mutations in the osteopetrotic transmembrane protein 1 (Ostm1) gene are responsible for the most severe form of autosomal recessive osteopetrosis both in humans and in the gray lethal (gl/gl) mouse. This defect leads to increased bone mass with bone marrow occlusion and hematopoietic defects. To establish the expression profile of the mouse Ostm1 protein in vivo, homologous recombination in bacteria was designed to generate a V5-Ostm1 bacterial artificial chromosome (BAC) that was subsequently integrated in the mouse genome. Tissue expression of the transgene V5-Ostm1 RNA and protein in transgenic mice follow the endogenous expression profile. Immunohistochemistry analysis demonstrated expression in neuronal populations from central and peripheral nervous system and defined a unique cellular expression pattern. Importantly, together with appropriate protein post-translational modification, in vivo rescue of the osteopetrotic bone gl/gl phenotype in BAC V5-Ostm1 gl/gl mice is consistent with the expression of a fully functional and active protein. These mice represent a unique tool to unravel novel Ostm1 functions in individual tissue and neuronal cell populations and the V5-Ostm1 transgene represents an easy visual marker to monitor the expression of Ostm1 in vitro and in vivo.


Assuntos
Cromossomos Artificiais Bacterianos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
PLoS One ; 15(5): e0233163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413098

RESUMO

Inositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN. INPP4B is highly expressed in testes, suggesting its role in testes development and physiology. The objective of this study was to determine whether Inpp4b deletion impacts testicular function in mice. In testis, Inpp4b expression was the highest in postmeiotic germ cells in both mice and men. The testes of Inpp4b knockout male mice were significantly smaller compared to the testes of wild-type (WT) males. Inpp4b-/- males produced fewer mature sperm cells compared to WT, and this difference increased with age and high fat diet (HFD). Reduction in early steroidogenic enzymes and luteinizing hormone (LH) receptor gene expression was detected, although androgen receptor (AR) protein level was similar in WT and Inpp4b-/- testes. Germ cell apoptosis was significantly increased in the knockout mice, while expression of meiotic marker γH2A.X was decreased. Our data demonstrate that INPP4B plays a role in maintenance of male germ cell differentiation and protects testis functions against deleterious effects of aging and high fat diet.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Apoptose/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Humanos , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA-Seq , Receptores Androgênicos/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Análise de Célula Única , Contagem de Espermatozoides , Testículo/crescimento & desenvolvimento
7.
Oncotarget ; 10(59): 6378-6390, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31695845

RESUMO

Inositol Polyphosphate 4-Phosphatase, Type II (INPP4B) is a tumour suppressor in breast, ovarian, prostate, thyroid and other cancers, attributed to its ability to reduce oncogenic Akt-signaling. However, emerging studies show that INPP4B also has tumour-promoting properties in cancers including acute myeloid leukemia, colon cancer, melanoma and breast cancer. Together these findings suggest that INPP4B may be a context dependent cancer gene. Whether INPP4B functions solely in a tumour suppressing or tumour promoting manner, or both in non-transformed cells is currently not clear. In this study, consequences of deficiency and overexpression of INPP4B on cellular transformation was investigated using a mouse embryonic fibroblast (MEF) model of cellular transformation. We observed that neither deficiency nor overexpression of INPP4B was sufficient to induce neoplastic transformation, alone or in combination with H-Ras V12 or E1A overexpression. However, Inpp4b-deficiency did cooperate with SV40 T-Large-mediated cellular transformation, a finding which was associated with increased phosphorylated-Akt levels. Transformation and phosphorylated-Akt levels were dampened upon overexpression of INPP4B in SV40 T-Large-MEF. Together, our findings support a model where INPP4B function suppresses transformation mediated by SV40 T-Large, but is inconsequential for Ras and E1A mediated transformation.

8.
Proc Natl Acad Sci U S A ; 116(21): 10453-10462, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31076558

RESUMO

Immune checkpoint inhibitors such as anti-CTLA-4 antibody are widely accepted therapeutic options for many cancers, but there is still a considerable gap in achieving their full potential. We explored the potential of activating the innate and adaptive immune pathways together to improve tumor reduction and survival outcomes. We treated a mouse model of melanoma with intratumoral injections of Toll-like receptor 1/2 (TLR1/2) ligand Pam3CSK4 plus i.p. injections of anti-CTLA-4 antibody. This combination treatment enhanced antitumor immune responses both qualitatively and quantitatively over anti-CTLA-4 alone, and its efficacy depended on CD4 T cells, CD8 T cells, Fcγ receptor IV, and macrophages. Interestingly, our results suggest a unique mechanism by which TLR1/2 ligand increased Fcγ receptor IV expression on macrophages, leading to antibody-dependent macrophage-mediated depletion of regulatory T cells in the tumor microenvironment and increasing efficacy of anti-CTLA-4 antibody in the combination treatment. This mechanism could be harnessed to modulate the clinical outcome of anti-CTLA-4 antibodies and possibly other antibody-based immunotherapies.


Assuntos
Antígeno CTLA-4/uso terapêutico , Lipopeptídeos/uso terapêutico , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Imunoterapia/métodos , Lipopeptídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/genética
9.
Arterioscler Thromb Vasc Biol ; 37(8): 1494-1502, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596376

RESUMO

OBJECTIVE: To establish the cellular source of plasma factor (F)XIII-A. APPROACH AND RESULTS: A novel mouse floxed for the F13a1 gene, FXIII-Aflox/flox (Flox), was crossed with myeloid- and platelet-cre-expressing mice, and cellular FXIII-A mRNA expression and plasma and platelet FXIII-A levels were measured. The platelet factor 4-cre.Flox cross abolished platelet FXIII-A and reduced plasma FXIII-A to 23±3% (P<0.001). However, the effect of platelet factor 4-cre on plasma FXIII-A was exerted outside of the megakaryocyte lineage because plasma FXIII-A was not reduced in the Mpl-/- mouse, despite marked thrombocytopenia. In support of this, platelet factor 4-cre depleted FXIII-A mRNA in brain, aorta, and heart of floxed mice, where FXIII-Apos cells were identified as macrophages as they costained with CD163. In the integrin αM-cre.Flox and the double copy lysozyme 2-cre.cre.Flox crosses, plasma FXIII-A was reduced to, respectively, 75±5% (P=0.003) and 30±7% (P<0.001), with no change in FXIII-A content per platelet, further consistent with a macrophage origin of plasma FXIII-A. The change in plasma FXIII-A levels across the various mouse genotypes mirrored the change in FXIII-A mRNA expression in aorta. Bone marrow transplantation of FXIII-A+/+ bone marrow into FXIII-A-/- mice both restored plasma FXIII-A to normal levels and replaced aortic and cardiac FXIII-A mRNA, while its transplantation into FXIII-A+/+ mice did not increase plasma FXIII-A levels, suggesting that a limited population of niches exists that support FXIII-A-releasing cells. CONCLUSIONS: This work suggests that resident macrophages maintain plasma FXIII-A and exclude the platelet lineage as a major contributor.


Assuntos
Fator XIII/metabolismo , Integrases/genética , Macrófagos/metabolismo , Animais , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Plaquetas/metabolismo , Transplante de Medula Óssea , Antígeno CD11b/sangue , Antígeno CD11b/genética , Células Cultivadas , Fator XIII/genética , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Integrases/metabolismo , Macrófagos/transplante , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fator Plaquetário 4/sangue , Fator Plaquetário 4/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética , Receptores de Superfície Celular/sangue , Receptores de Trombopoetina/sangue , Receptores de Trombopoetina/genética , Trombocitopenia/sangue , Trombocitopenia/genética , Tirosina Quinase 3 Semelhante a fms/sangue , Tirosina Quinase 3 Semelhante a fms/genética
10.
Am J Physiol Renal Physiol ; 313(4): F899-F905, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446459

RESUMO

Diabetes is the leading cause of end-stage renal disease, resulting in a significant health care burden and loss of economic productivity by affected individuals. Because current therapies for progression of diabetic nephropathy (DN) are only moderately successful, identification of underlying mechanisms of disease is essential to develop more effective therapies. We showed previously that inhibition of arginase using S-(2-boronoethyl)-l-cysteine (BEC) or genetic deficiency of the arginase-2 isozyme was protective against key features of nephropathy in diabetic mouse models. However, those studies did not determine whether all markers of DN were dependent only on arginase-2 expression. The objective of this study was to identify features of DN that are associated specifically with expression of arginase-1 or -2. Elevated urinary albumin excretion rate and plasma urea levels, increases in renal fibronectin mRNA levels, and decreased renal medullary blood flow were associated almost completely and specifically with arginase-2 expression, indicating that arginase-2 selectively mediates major aspects of diabetic renal injury. However, increases in renal macrophage infiltration and renal TNF-α mRNA levels occurred independent of arginase-2 expression but were almost entirely abolished by treatment with BEC, indicating a distinct role for arginase-1. We therefore generated mice with a macrophage-specific deletion of arginase-1 (CD11bCre /Arg1fl/fl ). CD11bCre /Arg1fl/fl mice had significantly reduced macrophage infiltration but had no effect on albuminuria compared with Arg1fl/fl mice after 12 wk of streptozotocin-induced diabetes. These results indicate that selective inhibition of arginase-2 would be effective in preventing or ameliorating major features of diabetic renal injury.


Assuntos
Arginase/metabolismo , Nefropatias Diabéticas/enzimologia , Albuminúria/enzimologia , Albuminúria/etiologia , Animais , Nefropatias Diabéticas/complicações , Fibronectinas/metabolismo , Macrófagos/enzimologia , Masculino , Camundongos , Circulação Renal , Fator de Necrose Tumoral alfa/metabolismo
11.
Sci Rep ; 6: 30918, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480204

RESUMO

Bone homeostasis is maintained by the sophisticated coupled actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here we identify activating transcription factor 3 (ATF3) as a pivotal transcription factor for the regulation of bone resorption and bone remodeling under a pathological condition through modulating the proliferation of osteoclast precursors. The osteoclast precursor-specific deletion of ATF3 in mice led to the prevention of receptor activator of nuclear factor-κB (RANK) ligand (RANKL)-induced bone resorption and bone loss, although neither bone volume nor osteoclastic parameter were markedly altered in these knockout mice under the physiological condition. RANKL-dependent osteoclastogenesis was impaired in vitro in ATF3-deleted bone marrow macrophages (BMM). Mechanistically, the deficiency of ATF3 impaired the RANKL-induced transient increase in cell proliferation of osteoclast precursors in bone marrow in vivo as well as of BMM in vitro. Moreover, ATF3 regulated cyclin D1 mRNA expression though modulating activator protein-1-dependent transcription in the osteoclast precursor, and the introduction of cyclin D1 significantly rescued the impairment of osteoclastogenesis in ATF3-deleted BMM. Therefore, these findings suggest that ATF3 could have a pivotal role in osteoclastogenesis and bone homeostasis though modulating cell proliferation under pathological conditions, thereby providing a target for bone diseases.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Remodelação Óssea , Reabsorção Óssea/prevenção & controle , Osteoclastos/citologia , Ligante RANK/efeitos adversos , Animais , Células da Medula Óssea/metabolismo , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo
12.
Mol Cell Biol ; 36(19): 2451-63, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27381458

RESUMO

Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here, we show that the transcriptional coactivator/repressor interferon-related developmental regulator 1 (Ifrd1) is expressed in osteoclast lineages and represents a component of the machinery that regulates bone homeostasis. Ifrd1 expression was transcriptionally regulated in preosteoclasts by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) through activator protein 1. Global deletion of murine Ifrd1 increased bone formation and decreased bone resorption, leading to a higher bone mass. Deletion of Ifrd1 in osteoclast precursors prevented RANKL-induced bone loss, although no bone loss was observed under normal physiological conditions. RANKL-dependent osteoclastogenesis was impaired in vitro in Ifrd1-deleted bone marrow macrophages (BMMs). Ifrd1 deficiency increased the acetylation of p65 at residues K122 and K123 via the inhibition of histone deacetylase-dependent deacetylation in BMMs. This repressed the NF-κB-dependent transcription of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), an essential regulator of osteoclastogenesis. These findings suggest that an Ifrd1/NF-κB/NFATc1 axis plays a pivotal role in bone remodeling in vivo and represents a therapeutic target for bone diseases.


Assuntos
Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Ligante RANK/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
13.
Neuro Oncol ; 18(7): 939-49, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26951383

RESUMO

BACKGROUND: Glioblastomas are highly vascularized tumors with a prominent infiltration of macrophages/microglia whose role in promoting glioma growth, invasion, and angiogenesis has not been fully elucidated. METHODS: The contribution of myeloid-derived vascular endothelial growth factor (VEGF) to glioma growth was analyzed in vivo in a syngeneic intracranial GL261 glioma model using a Cre/loxP system to knock out the expression of VEGF-A in CD11b + myeloid cells. Changes in angiogenesis-related gene expression profile were analyzed in mutant bone marrow-derived (BMD) macrophages in vitro. Furthermore, we studied the influence of macrophages on GL261 growth, invasiveness, and protein expression profile of angiogenic molecules as well as the paracrine effect of mutant macrophages on angiogenesis in vitro. RESULTS: Myeloid cell-restricted VEGF-A deficiency leads to a growth delay of intracranial tumors and prolonged survival. The tumor vasculature in mutant mice was more regular, with increased pericyte coverage. Expression analysis revealed significant downregulation of VEGF-A and slight upregulation of TGFß-1 in BMD macrophages from mutant mice. Endothelial tube formation was significantly decreased by conditioned media from mutant macrophages. The expression of angiogenesis-related proteins in GL261 glioma cells in co-culture experiments either with wild-type or mutant macrophages remained unchanged, indicating that effects observed in vivo are due to myeloid-derived VEGF-A deficiency. CONCLUSIONS: Our results highlight the importance of VEGF derived from tumor-infiltrating myeloid cells for initiating vascularization in gliomas. The combination of antiangiogenic agents with myeloid cell-targeting strategies might provide a new therapeutic approach for glioblastoma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células Mieloides/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Glioma/irrigação sanguínea , Glioma/diagnóstico , Glioma/patologia , Macrófagos/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neovascularização Patológica/patologia
14.
Oncotarget ; 6(32): 33500-11, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26378024

RESUMO

Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. Although the factors underlying CRC development and progression are multifactorial, there is an important role for tumor-host interactions, especially interactions with myeloid cells. There is also increasing evidence that cyclooxygenase-derived prostaglandins are important mediators of CRC development and growth. Although prevention trials with either nonselective NSAIDs or COX-2 selective agents have shown promise, the gastrointestinal or cardiovascular side effects of these agents have limited their implementation. The predominant prostaglandin involved in CRC pathogenesis is PGE2. Since myeloid cells express high levels of the PGE2 receptor subtype, EP4, we selectively ablated EP4 in myeloid cells and studied adenoma formation in a mouse model of intestinal adenomatous polyposis, ApcMin/+ mice. ApcMin/+mice with selective myeloid cell deletion of EP4 had marked inhibition of both adenoma number and size, with associated decreases in mTOR and ERK activation. Either genetic or pharmacologic inhibition of EP4 receptors led to an anti-tumorigenic M1 phenotype of macrophages/dendritic cells. Therefore, PGE2-mediated EP4 signaling in myeloid cells promotes tumorigenesis, suggesting EP4 as a potentially attractive target for CRC chemoprevention or treatment.


Assuntos
Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Carcinogênese/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Receptores de Prostaglandina E Subtipo EP4/deficiência , Receptores de Prostaglandina E Subtipo EP4/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Kidney Int ; 88(4): 722-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26061548

RESUMO

Monocyte/macrophage recruitment correlates strongly with the progression of diabetic nephropathy. Tumor necrosis factor-α (TNF-α) is produced by monocytes/macrophages but the direct role of TNF-α and/or macrophage-derived TNF-α in the progression of diabetic nephropathy remains unclear. Here we tested whether inhibition of TNF-α confers kidney protection in diabetic nephropathy via a macrophage-derived TNF-α-dependent pathway. Compared to vehicle-treated mice, blockade of TNF-α with a murine anti-TNF-α antibody conferred kidney protection in Ins2(Akita) mice as indicated by reductions in albuminuria, plasma creatinine, histopathologic changes, kidney macrophage recruitment, and plasma inflammatory cytokine levels at 18 weeks of age. To assess the direct role of macrophage-derived TNF-α in diabetic nephropathy, we generated macrophage-specific TNF-α-deficient mice (CD11b(Cre)/TNF-α(Flox/Flox)). Conditional ablation of TNF-α in macrophages significantly reduced albuminuria, the increase in plasma creatinine and blood urea nitrogen, histopathologic changes, and kidney macrophage recruitment compared to diabetic TNF-α(Flox/Flox) control mice after 12 weeks of streptozotocin-induced diabetes. Thus, production of TNF-α by macrophages plays a major role in diabetic renal injury. Hence, blocking TNF-α could be a novel therapeutic approach for treatment of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Macrófagos Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Albuminúria/prevenção & controle , Animais , Anticorpos Neutralizantes/farmacologia , Biomarcadores/sangue , Nitrogênio da Ureia Sanguínea , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Quimiotaxia , Creatinina/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Predisposição Genética para Doença , Mediadores da Inflamação/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/patologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Fenótipo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
16.
J Biol Chem ; 289(20): 13912-25, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24719316

RESUMO

Loss of Ostm1 leads to the most severe form of osteopetrosis in mice and humans. Because functional rescue of the osteopetrotic defect in these mice extended their lifespan from ∼3 weeks to 6 weeks, this unraveled a second essential role of Ostm1. We discovered that Ostm1 is highly expressed in the mouse brain in neurons, microglia, and astrocytes. At 3-4 weeks of age, mice with Ostm1 loss showed 3-10-fold stimulation of reactive gliosis, with an increased astrocyte cell population and microglia activation. This inflammatory response was associated with marked retinal photoreceptor degeneration and massive neuronal loss in the brain. Intracellular characterization of neurons revealed abnormal storage of carbohydrates, lipids, and ubiquitinated proteins, combined with marked accumulation of autophagosomes that causes frequent axonal swelling. Stimulation of autophagy was provided by specific markers and by significant down-regulation of the mammalian target of rapamycin signaling, identifying a cellular pathologic mechanism. A series of transgenic mouse lines specifically targeted to distinct central nervous system cell subpopulations determined that Ostm1 has a primary and autonomous role in neuronal homeostasis. Complete functional complementation demonstrated that the development of severe and rapid neurodegeneration in these mice is independent of the hematopoietic lineage and has clinical implications for treatment of osteopetrosis. Importantly, this study establishes a novel neurodegenerative mouse model critical for understanding the multistep pathogenic cascade of cellular autophagy disorders toward therapeutic strategy design.


Assuntos
Autofagia , Proteínas de Membrana/deficiência , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ubiquitina-Proteína Ligases/deficiência , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Hematopoese , Homeostase , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Ubiquitina-Proteína Ligases/genética
17.
Ann N Y Acad Sci ; 1280: 52-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23551105

RESUMO

Inositol polyphosphate 4-phosphatase type II (Inpp4b) is a novel negative modulator of osteoclast differentiation and a prognostic locus for human osteoporosis. This short overview summarizes some of the cellular, molecular, and crosstalk signaling mechanisms that control osteoclast and osteoblast differentiation and activation.


Assuntos
Diferenciação Celular , Osteoclastos/citologia , Osteoporose/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Humanos , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoclastos/enzimologia , Osteoporose/patologia , Transdução de Sinais
18.
Mol Cell Biol ; 33(12): 2458-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589331

RESUMO

Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as ß-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Macrófagos/metabolismo , Paxilina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Animais , Antígeno CD47/biossíntese , Caderinas/biossíntese , Diferenciação Celular , Fusão Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Quimiocina CCL2/metabolismo , Quinase 2 de Adesão Focal/antagonistas & inibidores , Células Gigantes , Cadeias beta de Integrinas/biossíntese , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Fosforilação , Ligante RANK/metabolismo
19.
J Clin Invest ; 123(2): 666-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23321671

RESUMO

Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-1-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P1,3 receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.


Assuntos
Catepsina K/deficiência , Lisofosfolipídeos/metabolismo , Osteoclastos/enzimologia , Osteogênese/fisiologia , Esfingosina/análogos & derivados , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Reabsorção Óssea/enzimologia , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Catepsina K/antagonistas & inibidores , Catepsina K/genética , Diferenciação Celular , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoclastos/citologia , Osteogênese/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Esfingosina/metabolismo
20.
Cell Metab ; 14(4): 466-77, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982707

RESUMO

Osteoporosis is a multifactorial genetic disease characterized by reduction of bone mass due to dysregulation of osteoclast differentiation or maturation. Herein, we identified a regulator of osteoclastogenesis, the murine homolog of inositol polyphosphate 4-phosphatase type IIα (Inpp4bα). Expression of Inpp4bα is detected from early osteoclast differentiation to activation stage. Targeted expression of native Inpp4bα ex vivo repressed whereas phosphatase-inactive Inpp4bα stimulated osteoclast differentiation. Inpp4bα acts on intracellular calcium level that modulates NFATc1 nuclear translocation and activation. In vivo mice deficient in Inpp4b displayed increased osteoclast differentiation rate and potential resulting in decreased bone mass and osteoporosis. Importantly, INPP4B in human was identified as a susceptibility locus for osteoporosis. This study defined Inpp4b as a major modulator of the osteoclast differentiation and as a gene linked to variability of bone mineral density in mice and humans.


Assuntos
Densidade Óssea/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Regulação para Baixo , Humanos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Osteoporose/etiologia , Monoéster Fosfórico Hidrolases/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA