Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(43): 4148-4154, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086783

RESUMO

The transcriptional co-activator with the PDZ binding motif (TAZ) is a critical regulator of numerous cellular processes such as cell differentiation, development, proliferation, and cell growth. Aberrant expression and activity of TAZ are also featured in many human malignancies. A hallmark of TAZ biology is its cytoplasmic retention mediated by 14-3-3 isoforms in response to phosphorylation of Ser89 by members of the LATS family of kinases. Following the observation that TAZ is a highly phosphorylated protein even when Ser89 is mutated, high-resolution mass spectrometry employing data-independent acquisition and ion mobility separation was conducted to elucidate additional TAZ phosphorylation sites that may play a role in regulating this critical transcriptional rheostat. Numerous phosphorylation sites on TAZ were identified, including several novel modifications. Of notable interest was the identification of positional phosphoisomers on a phosphopeptide containing Ser89. Optimized use of a so-called wideband enhancement acquisition technique yielded higher-quality fragmentation data that confirmed the detection of Ser93 as the positional phosphoisomer partner of Ser89 and identified diagnostic fragment ions for the phosphorylation events. Functional analysis indicated that Ser93 phosphorylation reduces the level of 14-3-3 association and increases the level of nuclear translocation, indicating this phosphorylation event attenuates the 14-3-3-mediated TAZ cytoplasmic retention mechanism. These findings suggest that the biological activities of TAZ are likely dynamically regulated by multisite phosphorylation.


Assuntos
Fosfopeptídeos/química , Fatores de Transcrição/química , Proteínas 14-3-3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfopeptídeos/farmacologia , Fosforilação , Transdução de Sinais/fisiologia , Transativadores/metabolismo
2.
J Biol Chem ; 292(2): 539-550, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27856639

RESUMO

Human YVH1 (hYVH1), also known as dual specificity phosphatase 12 (DUSP12), is a poorly characterized atypical dual specificity phosphatase widely conserved throughout evolution. Recent findings have demonstrated that hYVH1 expression affects cellular DNA content and is a novel cell survival phosphatase preventing both thermal and oxidative stress-induced cell death, whereas studies in yeast have established YVH1 as a novel 60S ribosome biogenesis factor. In this study, we have isolated novel hYVH1-associating proteins from human U2OS osteosarcoma cells using affinity chromatography coupled to mass spectrometry employing ion mobility separation. Numerous ribosomal proteins were identified, confirming the work done in yeast. Furthermore, proteins known to be present on additional RNP particles were identified, including Y box-binding protein 1 (YB-1) and fragile X mental retardation protein, proteins that function in translational repression and stress granule regulation. Follow-up studies demonstrated that hYVH1 co-localizes with YB-1 and fragile X mental retardation protein on stress granules in response to arsenic treatment. Interestingly, hYVH1-positive stress granules were significantly smaller, whereas knocking down hYVH1 expression attenuated stress granule breakdown during recovery from arsenite stress, indicating a possible role for hYVH1 in stress granule disassembly. These results propagate a role for dual specificity phosphatases at RNP particles and suggest that hYVH1 may affect a variety of fundamental cellular processes by regulating messenger ribonucleoprotein (mRNP) dynamics.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Ribonucleoproteínas/metabolismo , Arsenitos/farmacologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/química , Fosfatase 1 de Especificidade Dupla/química , Fosfatase 1 de Especificidade Dupla/isolamento & purificação , Humanos , Ribonucleoproteínas/química , Ribonucleoproteínas/isolamento & purificação , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Proteínas Ribossômicas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/isolamento & purificação , Proteína 1 de Ligação a Y-Box/metabolismo
3.
J Biol Chem ; 290(35): 21676-89, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26134565

RESUMO

Receptor-mediated endocytosis 8 (RME-8) is a DnaJ domain containing protein implicated in translocation of Hsc70 to early endosomes for clathrin removal during retrograde transport. Previously, we have demonstrated that RME-8 associates with early endosomes in a phosphatidylinositol 3-phosphate (PI(3)P)-dependent fashion. In this study, we have now identified amino acid determinants required for PI(3)P binding within a region predicted to adopt a pleckstrin homology-like fold in the N terminus of RME-8. The ability of RME-8 to associate with PI(3)P and early endosomes is largely abolished when residues Lys(17), Trp(20), Tyr(24), or Arg(26) are mutated resulting in diffuse cytoplasmic localization of RME-8 while maintaining the ability to interact with Hsc70. We also provide evidence that RME-8 PI(3)P binding regulates early endosomal clathrin dynamics and alters the steady state localization of the cation-independent mannose 6-phosphate receptor. Interestingly, RME-8 endosomal association is also regulated by the PI(3)P-binding protein SNX1, a member of the retromer complex. Wild type SNX1 restores endosomal localization of RME-8 W20A, whereas a SNX1 variant deficient in PI(3)P binding disrupts endosomal localization of wild type RME-8. These results further highlight the critical role for PI(3)P in the RME-8-mediated organizational control of various endosomal activities, including retrograde transport.


Assuntos
Clatrina/metabolismo , Endossomos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Fosfatidilinositóis/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos , Células HEK293 , Proteínas de Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Fosfatos de Inositol/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Transporte Proteico , Receptor IGF Tipo 2/metabolismo , Sintaxina 1/metabolismo
4.
Cell Cycle ; 10(10): 1669-78, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21521943

RESUMO

The dual-specificity phosphatase hYVH1 (DUSP12) is an evolutionary conserved phosphatase that also contains a unique zinc-binding domain. Recent evidence suggests that this enzyme plays a role in cell survival and ribosome biogenesis. Here, we report that hYVH1 expression also affects cell cycle progression. Overexpression of hYVH1 caused a significant increase in polyploidy and in the G 2/M cell population, with a subsequent decrease in the G 0/G 1 population. Phosphatase activity is dispensable, while the zinc-binding domain is necessary and sufficient for hYVH1-mediated cell cycle changes. In agreement with this, siRNA-mediated silencing of hYVH1 expression resulted in a dramatic increase in the G 0/G 1 population and susceptibility to cellular senescence. Additionally, mass spectrometry-based methods identified novel hYVH1 phosphorylation sites, including a C-terminal modification at position Ser ( 335) in the zinc-binding domain. Interestingly, phosphorylation at Ser335 regulates subcellular targeting of hYVH1 and augments the hYVH1 G 2/M phenotype. Collectively we demonstrate that hYVH1 is a novel modulator of cell cycle progression; a function mainly mediated by its C-terminal zinc-binding domain.


Assuntos
DNA/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Divisão Celular , Linhagem Celular , Senescência Celular , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Fosfatases de Especificidade Dupla/genética , Fase G2 , Humanos , Fosforilação , Poliploidia , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Zinco/química
5.
J Am Chem Soc ; 132(33): 11392-4, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20677743

RESUMO

We present a simple method by which gold nanoparticles (AuNPs) are used to simultaneously isolate and enrich for free or modified thiol-containing peptides, thus facilitating the identification of protein S-modification sites. Here, protein disulfide isomerase (PDI) and dual specificity phosphatase 12 (DUSP12 or hYVH1) were S-nitrosylated or S-glutathionylated, their free thiols differentially alkylated, and subjected to proteolysis. AuNPs were added to the digests, and the AuNP-bound peptides were isolated by centrifugation and released by thiol exchange. These AuNP-bound peptides were analyzed by MALDI-TOF mass spectrometry revealing that AuNPs result in a significant enrichment of free thiol-containing as well as S-nitrosylated, S-glutathionylated, and S-alkylated peptides, leading to the unequivocal assignment of thiols susceptible to modification.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Glutationa/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , S-Nitrosotióis/metabolismo , Alquilação , Sítios de Ligação , Fosfatase 1 de Especificidade Dupla/química , Glutationa/química , Humanos , Isomerases de Dissulfetos de Proteínas/química , S-Nitrosotióis/química
6.
J Biol Chem ; 284(34): 22853-64, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19567874

RESUMO

YVH1 was one of the first eukaryotic dual specificity phosphatases cloned, and orthologues poses a unique C-terminal zinc-coordinating domain in addition to a cysteine-based phosphatase domain. Our recent results revealed that human YVH1 (hYVH1) protects cells from oxidative stress. This function requires phosphatase activity and the zinc binding domain. This current study provides evidence that the thiol-rich zinc-coordinating domain may act as a redox sensor to impede the active site cysteine from inactivating oxidation. Furthermore, using differential thiol labeling and mass spectrometry, it was determined that hYVH1 forms intramolecular disulfide bonds at the catalytic cleft as well as within the zinc binding domain to avoid irreversible inactivation during severe oxidative stress. Importantly, zinc ejection is readily reversible and required for hYVH1 activity upon returning to favorable conditions. This inimitable mechanism provides a means for hYVH1 to remain functionally responsive for protecting cells during oxidative stimuli.


Assuntos
Dissulfetos/química , Fosfatase 1 de Especificidade Dupla/química , Fosfatase 1 de Especificidade Dupla/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Fosfatase 1 de Especificidade Dupla/genética , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zinco/metabolismo
7.
Biochem Cell Biol ; 87(2): 415-30, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19370059

RESUMO

Late embryogenesis abundant (LEA) proteins are hydrophilic molecules that are believed to function in desiccation and low-temperature tolerance in some plants and plant propagules, certain prokaryotes, and several animal species. The brine shrimp Artemia franciscana can produce encysted embryos (cysts) that enter diapause and are resistant to severe desiccation. This ability is based on biochemical adaptations, one of which appears to be the accumulation of the LEA protein that is the focus of this study. The studies described herein characterize a 21 kDa protein in encysted Artemia embryos as a group 1 LEA protein. The amino acid sequence of this protein and its gene have been determined and entered into the NCBI database (no. EF656614). The LEA protein consists of 182 amino acids and it is extremely hydrophilic, with glycine (23%), glutamine (17%), and glutamic acid (12.6%) being the most abundant amino acids. This protein also consists of 8 tandem repeats of a 20 amino acid sequence, which is characteristic of group 1 LEA proteins from non-animal species. The LEA protein and its gene are expressed only in encysted embryos and not in larvae or adults. Evidence is presented to show that the LEA protein functions in the prevention of drying-induced protein aggregation, which supports its functional role in desiccation tolerance. This report describes, for the first time, the purification and characterization of a group 1 LEA protein from an animal species.


Assuntos
Artemia/embriologia , Artemia/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Ânions , Artemia/genética , Sequência de Bases , Cátions , Cromatografia em Gel , Cromatografia por Troca Iônica , Citrato (si)-Sintase/química , Dessecação , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Temperatura Alta , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Reação em Cadeia da Polimerase , Estrutura Quaternária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína , Trealose/metabolismo
8.
J Am Soc Mass Spectrom ; 18(2): 260-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17074504

RESUMO

Regulation of the redox state of protein disulfide isomerase (PDI) is critical for its various catalytic functions. Here we describe a procedure utilizing isotope-coded affinity tag (ICAT) technology and mass spectrometry that quantitates relative changes in the dynamic thiol and disulfide states of human PDI. Human PDI contains six cysteine residues, four present in two active sites within the a and a' domains, and two present in the b' domain. ICAT labeling of human PDI indicates a difference between the redox state of the two active sites. Furthermore, under auto-oxidation conditions an approximately 80% decrease in available thiols within the a domain was detected. Surprisingly, the redox state of one of the two cysteines, Cys-295, within the b' domain was altered between the fully reduced and the auto-oxidized state of PDI while the other b' domain cysteine remained fully reduced. An interesting mono- and dioxidation modification of an invariable tryptophan residue, Trp-35, within the active site was also mapped by tandem mass spectrometry. Our findings indicate that ICAT methodology in conjunction with mass spectrometry represents a powerful tool to monitor changes in the redox state of individual cysteine residues within PDI under various conditions.


Assuntos
Marcação por Isótopo/métodos , Isomerases de Dissulfetos de Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos de Sulfidrila/química , Sequência de Aminoácidos , Cisteína/química , Humanos , Dados de Sequência Molecular , Oxirredução , Mapeamento de Peptídeos , Proteínas Recombinantes/química
9.
FEBS Lett ; 580(1): 179-83, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16364312

RESUMO

Yersinia encodes a protein kinase, YpkA, which disrupts the actin cytoskeleton. Using an approach termed chemical genetics, we identified a 36-kDa substrate for YpkA in both J774 lysates and bovine brain cytosol. Mass spectrometry analysis identified this substrate as FLJ20113, an open reading frame that corresponds to otubain 1, a deubiquitinating enzyme implicated in immune cell clonal anergy. We demonstrate that otubain 1 is phosphorylated by YpkA in vitro and interacts with YpkA and actin in vivo. Identification of otubain 1 as a YpkA substrate suggests that regulation of immune cell anergy may be a survival mechanism for Yersinia.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Yersinia/enzimologia , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/farmacologia , Química Encefálica , Bovinos , Linhagem Celular , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Anergia Clonal/efeitos dos fármacos , Anergia Clonal/imunologia , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/imunologia , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/farmacologia , Especificidade por Substrato , Yersinia/imunologia , Yersinia/patogenicidade
10.
Biochem J ; 391(Pt 2): 351-7, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15960611

RESUMO

PDI (protein disulphide-isomerase) activity is generally monitored by insulin turbidity assay or scrambled RNase assay, both of which are performed by UV-visible spectroscopy. In this paper, we present a sensitive fluorimetric assay for continuous determination of disulphide reduction activity of PDI. This assay utilizes the pseudo-substrate diabz-GSSG [where diabz stands for di-(o-aminobenzoyl)], which is formed by the reaction of isatoic anhydride with the two free N-terminal amino groups of GSSG. The proximity of two benzoyl groups leads to quenching of the diabz-GSSG fluorescence by approx. 50% in comparison with its non-disulphide-linked form, abz-GSH (where abz stands for o-aminobenzoyl). Therefore the PDI-dependent disulphide reduction can be monitored by the increase in fluorescence accompanying the loss of proximity-quenching upon conversion of diabz-GSSG into abz-GSH. The apparent K(m) of PDI for diabz-GSSG was estimated to be approx. 15 muM. Unlike the insulin turbidity assay and scrambled RNase assay, the diabz-GSSG-based assay was shown to be effective in determining a single turnover of enzyme in the absence of reducing agents with no appreciable blank rates. The assay is simple to perform and very sensitive, with an estimated detection limit of approx. 2.5 nM PDI, enabling its use for the determination of platelet surface PDI activity in crude sample preparations.


Assuntos
Fluorescência , Isomerases de Dissulfetos de Proteínas/análise , Plaquetas/enzimologia , Dissulfetos/química , Dissulfetos/metabolismo , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/metabolismo , Humanos , Cinética , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Sensibilidade e Especificidade , Especificidade por Substrato
11.
J Biol Chem ; 278(20): 18514-23, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12626518

RESUMO

Pathogenic Yersinia contain a virulence plasmid that encodes genes for intracellular effectors, which neutralize the host immune response. One effector, YopM, is necessary for Yersinia virulence, but its function in host cells is unknown. To identify potential cellular pathways affected by YopM, proteins that co-immunoprecipitate with YopM in mammalian cells were isolated and identified by mass spectrometry. Results demonstrate that two kinases, protein kinase C-like 2 (PRK2) and ribosomal S6 protein kinase 1 (RSK1), interact directly with YopM. These two kinases associate only when YopM is present, and expression of YopM in cells stimulates the activity of both kinases. RSK1 is activated directly by interaction with YopM, and RSK1 kinase activity is required for YopM-stimulated PRK2 activity. YopM activation of RSK1 occurs independently of the actions of YopJ on the MAPK pathway. YopM is also required for Yersinia-induced changes in RSK1 mobility in infected macrophage cells. These results identify the first intracellular targets of YopM and suggest YopM acts to stimulate the activity of PRK2 and RSK1.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteína Quinase C/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Ativação Enzimática , Glutationa Transferase/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Modelos Biológicos , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteína Quinase C/química , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Transfecção , Yersinia pseudotuberculosis/metabolismo
12.
Proc Natl Acad Sci U S A ; 100(3): 904-9, 2003 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-12538863

RESUMO

The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to thwart the host innate immune response. One of the effectors, YopT, causes the disruption of the actin cytoskeleton and contributes to the inhibition of phagocytosis of the pathogen. YopT functions as a cysteine protease to cleave Rho family GTPases. We have analyzed the YopT cleavage products of Rho GTPases by TLC and determined their chemical structure by MS. Amino acid labeling experiments were performed to locate the exact site in RhoA where the YopT cleavage occurs. Our data unambiguously demonstrate that YopT cleaves N-terminal to the prenylated cysteine in RhoA, Rac, and Cdc42 and that the cleavage product of the GTPases is geranylgeranyl cysteine methyl ester. YopT cleaves GTP- and GDP-bound forms of RhoA equally, suggesting that the cleavage does not depend upon the conformation status of the GTPases. YopT also cleaves both farnesylated and geranylgeranylated forms of RhoA. The polybasic sequence in the C terminus of RhoA is essential for YopT substrate recognition and cleavage.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citotoxinas , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular , Cromatografia em Camada Fina , Cisteína/química , Cisteína Endopeptidases , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Glicina/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Prenilação de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Transfecção , Yersinia pseudotuberculosis/enzimologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA