Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(9): e0202118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192833

RESUMO

To reduce the increasing need for corneal transplantation, attempts are currently aiming to restore corneal clarity, one potent source of cells are multipotent adult progenitor cells (MAPC®). These cells release a powerful cocktail of paracrine factors that can guide wound healing and tissue regeneration. However, their role in corneal regeneration has been overlooked. Thus, we sought to explore the potential of combining the cytoprotective storage feature of alginate, with MAPC to generate a storable cell-laden gel for corneal wound healing. 72 hours following hypothermic storage, alginate encapsulation was shown to maintain MAPC viability at either 4 or 15°C. Encapsulated MAPC (2 x106 cells/mL) stored at 15°C presented the optimum temperature that allowed for cell recovery. These cells had the ability to reattach to tissue culture plastic whilst exhibiting normal phenotype and this was maintained in serum-free and xenobiotic-free medium. Furthermore, corneal stromal cells presented a significant decrease in scratch-wounds in the presence of alginate encapsulated MAPC compared to a no-cell control (p = 0.018). This study shows that immobilization of MAPC within an alginate hydrogel does not hinder their ability to affect a secondary cell population via soluble factors and that these effects are successfully retained following hypothermic storage.


Assuntos
Células-Tronco Adultas/metabolismo , Alginatos/química , Substância Própria/fisiologia , Células-Tronco Multipotentes/metabolismo , Células Estromais/fisiologia , Adulto , Células-Tronco Adultas/química , Sobrevivência Celular/fisiologia , Células Cultivadas , Substância Própria/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Multipotentes/química , Comunicação Parácrina/fisiologia , Solubilidade
2.
J Clin Monit Comput ; 31(2): 303-308, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26961500

RESUMO

The eye lens is one of the most sensitive organs for radiation injury and exposure might lead to radiation induced cataract. Eye lens dosimetry in anesthesiology has been published in few clinical trials and an active debate about the causality of radiation induced cataract is still ongoing. Recently, the International Commission on Radiological Protection (ICRP) recommended a reduction in the annual dose limit for occupational exposure for the lens of the eye from 150 to 20 mSv, averaged over a period of 5 years, with the dose in a single year not exceeding 50 mSv. This prospective study investigated eye lens dosimetry in anesthesiology practice during a routine year of professional activity. The radiation exposure measured represented the exposure in a normal working schedule of a random anesthesiologist during 1 month and this cumulative eye lens dose was extrapolated to 1 year. Next, eye lens doses were measured in anesthesiology during neuro-embolisation procedures, radiofrequency ablations or vertebroplasty/kyphoplasty procedures. The eye lens doses are measured in terms of the dose equivalent H p(3) with the Eye-D dosimeter (Radcard, Poland) close to the right eye (on the temple). In 16 anesthesiologists, the estimated annual eye lens doses range from a minimum of 0.4 mSv to a maximum of 3.5 mSv with an average dose of 1.33 mSv. Next, eye lens doses were measured for nine neuro-embolisation procedures, ten radiofrequency ablations and six vertebroplasty/kyphoplasty procedures. Average eye lens doses of 77 ± 76 µSv for neuro-embolisations, 38 ± 34 µSv for cardiac ablations and 40 ± 44 µSv for vertebro-/kyphoplasty procedures were recorded. The maximum doses were respectively 264, 97 and 122 µSv. This study demonstrated that the estimated annual eye lens dose is well below the revised ICRP's limit of 20 mSv/year. However, we demonstrated high maximum and average doses during neuro-embolisation, cardiac ablation and vertebro-/kyphoplasty procedures. With radiation induced cataract being explained as a possible stochastic effect, without a threshold dose, anesthesiologists who regularly work in a radiological environment should remain vigilant and maintain radiation safety standards at all times. This includes adequately protective equipment (protection shields, apron, thyroid shield and leaded eye wear), keeping distance, routine monitoring and appropriate education.


Assuntos
Anestesiologia , Cristalino/efeitos da radiação , Exposição Ocupacional/prevenção & controle , Proteção Radiológica/métodos , Radiometria/instrumentação , Anestesiologistas , Extração de Catarata , Ablação por Cateter , Embolização Terapêutica , Humanos , Cifoplastia , Estudos Prospectivos , Proteção Radiológica/instrumentação , Ondas de Rádio , Radiometria/métodos , Vertebroplastia , Recursos Humanos
3.
Diabetologia ; 60(1): 134-142, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27704164

RESUMO

AIMS/HYPOTHESIS: Hypoxia in the initial days after islet transplantation leads to considerable loss of islet mass and contributes to disappointing outcomes in the clinical setting. The aim of the present study was to investigate whether co-transplantation of human non-endothelial bone marrow-derived multipotent adult progenitor cells (MAPCs), which are non-immunogenic and can secrete angiogenic growth factors during the initial days after implantation, could improve islet engraftment and survival. METHODS: Islets (150) were co-transplanted, with or without human MAPCs (2.5 × 105) as separate or composite pellets, under the kidney capsule of syngeneic alloxan-induced diabetic C57BL/6 mice. Blood glucose levels were frequently monitored and IPGTTs were carried out. Grafts and serum were harvested at 2 and 5 weeks after transplantation to assess outcome. RESULTS: Human MAPCs produced high amounts of angiogenic growth factors, including vascular endothelial growth factor, in vitro and in vivo, as demonstrated by the induction of neo-angiogenesis in the chorioallantoic membrane assay. Islet-human MAPC co-transplantation as a composite pellet significantly improved the outcome of islet transplantation as measured by the initial glycaemic control, diabetes reversal rate, glucose tolerance and serum C-peptide concentration compared with the outcome following transplantation of islets alone. Histologically, a higher blood vessel area and density in addition to a higher vessel/islet ratio were detected in recipients of islet-human MAPC composites. CONCLUSIONS/INTERPRETATION: The present data suggest that co-transplantation of mouse pancreatic islets with human MAPCs, which secrete high amounts of angiogenic growth factors, enhance islet graft revascularisation and subsequently improve islet graft function.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Adulto , Animais , Glicemia/fisiologia , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia
4.
Stem Cells Transl Med ; 5(6): 709-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27075768

RESUMO

UNLABELLED: Therapeutic benefit of stem cells has been demonstrated in multiple disease models and clinical trials. Robust quality assurance is imperative to make advancements in culturing procedures to enable large-scale cell manufacturing without hampering therapeutic potency. MicroRNAs (miRNAs or miRs) are shown to be master regulators of biological processes and are potentially ideal quality markers. We determined miRNA markers differentially expressed under nonclinical multipotent adult progenitor cell (MAPC) and mesenchymal stem cell (MSC) culturing conditions that regulate important stem cell features, such as proliferation and differentiation. These bone marrow-derived stem cell types were selected because they both exert therapeutic functions, but have different proliferative and regenerative capacities. To determine cell-specific marker miRNAs and assess their effects on stem cell qualities, a miRNA and mRNA profiling was performed on MAPCs and MSCs isolated from three shared donors. We applied an Ingenuity Pathway Analysis-based strategy that combined an integrated RNA profile analysis and a biological function analysis to determine the effects of miRNA-mRNA interactions on phenotype. This resulted in the identification of important miRNA markers linked to cell-cycle regulation and development, the most distinctive being MAPC marker miR-204-5p and MSC marker miR-335-5p, for which we provide in vitro validation of its function in differentiation and cell cycle regulation, respectively. Importantly, marker expression is maintained under xeno-free conditions and during bioreactor isolation and expansion of MAPC cultures. In conclusion, the identified biologically relevant miRNA markers can be used to monitor stem cell stability when implementing variations in culturing procedures. SIGNIFICANCE: Human adult marrow stromal stem cells have shown great potential in addressing unmet health care needs. Quality assurance is imperative to make advancements in large-scale manufacturing procedures. MicroRNAs are master regulators of biological processes and potentially ideal quality markers. MicroRNA and mRNA profiling data of two human adult stem cell types were correlated to biological functions in silico. Doing this provided evidence that differentially expressed microRNAs are involved in regulating specific stem cell features. Furthermore, expression of a selected microRNA panel was maintained in next-generation culturing platforms, demonstrating the robustness of microRNA profiling in stem cell comparability testing.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
5.
Mol Ther ; 23(11): 1783-1793, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26216515

RESUMO

T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1ß-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients.


Assuntos
Células-Tronco Adultas/fisiologia , Dinoprostona/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Interleucina-7/imunologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Multipotentes/fisiologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , Células-Tronco Adultas/imunologia , Autoimunidade , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Rejeição de Enxerto , Humanos , Tolerância Imunológica , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-7/metabolismo , Depleção Linfocítica/efeitos adversos , Masculino , Células-Tronco Mesenquimais/imunologia , Células-Tronco Multipotentes/imunologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transplante Homólogo/métodos , Adulto Jovem
6.
Springerplus ; 2: 590, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294542

RESUMO

A decrease in the lineage commitment of multipotent Mesenchymal stem cells (MSC) to the bone forming osteoblast lineage and an increase in the commitment to the fat forming adipocyte lineage is more common in bone marrow of elderly persons. A link between methylation status and MSC differentiation remains unclear. Therefore, we hypothesize that hypomethylation may decide the fate decisions of MSC. In the current study, murine bone marrow derived-C3H10T1/2 stem cell was used to examine the role of methylation mechanism on the differentiation potential of stem cells into osteoblasts or adipocytes. C3H10T1/2 cells were treated with Periodate oxidized adenosine (Adox), an inhibitor of S-adenosylhomocysteine-dependent hydrolase (SAHH), which in turn block the non-DNA methylation pathway. The effect of hypomethylation on C3H10T1/2 stem cell differentiation was determined by measuring the alkaline phosphates activity and the degree of mineralization as well as Oil-red O staining and lipid content. The ratio of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) was determined as a metabolic indicator of cellular methylation potential. It was clearly observed that hypomethylation significantly (P < 0.05) reduces SAM: SAH ratio, alkaline phosphates activity, calcification and thereby, osteoblast differentiation. Conversely, adipocyte differentiation was stimulated by hypomethylation. Altogether, our data suggest that non-DNA hypomethylation changes the differentiation potential of C3H10T1/2 stem cells for less osteogenic and more adipogenic.

7.
J Immunol ; 190(9): 4542-52, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23547116

RESUMO

A major goal of immunotherapy remains the control of pathogenic T cell responses that drive autoimmunity and allograft rejection. Adherent progenitor cells, including mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs), represent attractive immunomodulatory cell therapy candidates currently active in clinical trials. MAPCs can be distinguished from MSCs on the basis of cellular phenotype, size, transcriptional profile, and expansion capacity. However, despite their ongoing evaluation in autoimmune and allogeneic solid organ transplantation settings, data supporting the immune regulatory potential of clinical-grade MAPCs are limited. In this study, we used allogeneic islet transplantation as a model indication to assess the ability of clinical-grade MAPCs to control T cell responses that drive immunopathology in human autoimmune disease and allograft rejection. MAPCs suppressed T cell proliferation and Th1 and Th17 cytokine production while increasing secretion of IL-10 and were able to suppress effector functions of bona fide autoreactive T cells from individuals with type 1 diabetes mellitus, including killing of human islets. Furthermore, MAPCs favored the proliferation of regulatory T cells during homeostatic expansion driven by γ-chain cytokines and exerted a durable, yet reversible, control of T cell function. MAPC suppression required licensing and proceeded via IDO-mediated tryptophan catabolism. Therefore, the common immune modulatory characteristics of clinical-grade MAPCs shown in this study suggest that they can be regarded as an alternative source of adult progenitor cells with similar clinical usefulness to MSCs. Taken collectively, these findings may guide the successful deployment of both MSCs and MAPCs for the amelioration of human autoimmunity and allograft rejection.


Assuntos
Autoimunidade/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Ativação Linfocitária/imunologia , Células-Tronco/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Células-Tronco Adultas/imunologia , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Rejeição de Enxerto/imunologia , Humanos , Imunomodulação/imunologia , Interleucina-10/imunologia , Masculino , Triptofano/imunologia , Adulto Jovem
8.
Front Immunol ; 3: 345, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23205020

RESUMO

The last decade has seen much progress in adjunctive cell therapy for immune disorders. Both corporate and institutional Phase III studies have been run using mesenchymal stromal cells (MSC) for treatment of Graft versus Host Disease (GvHD), and product approval has been achieved for treatment of pediatric GvHD in Canada and New Zealand (Prochymal(®); Osiris Therapeutics). This effectiveness has prompted the prophylactic use of adherent stem cells at the time of allogeneic hematopoietic stem cell transplantation (HSCT) to prevent occurrence of GvHD and possibly provide stromal support for hematopoietic recovery. The MultiStem(®) product is an adult adherent stem cell product derived from bone marrow which has significant clinical exposure. MultiStem cells are currently in phase II clinical studies for treatment of ischemic stroke and ulcerative colitis, with Phase I studies completed in acute myocardial infarction and for GvHD prophylaxis in allogeneic HSCT, demonstrating that MultiStem administration was well tolerated while the incidence and severity of GvHD was reduced. In advancing this clinical approach, it is important to recognize that alternate models exist based on clinical manufacturing strategies. Corporate sponsors exploit the universal donor properties of adherent stem cells and manufacture at large scale, with many products obtained from one or limited donors and used across many patients. In Europe, institutional sponsors often produce allogeneic product in a patient designated context. For this approach, disposable bioreactors producing <10 products/donor in a closed system manner are very well suited. In this review, the use of adherent stem cells for GvHD prophylaxis is summarized and the suitability of disposable bioreactors for MultiStem production is presented, with an emphasis on quality control parameters, which are critical with a multiple donor approach for manufacturing.

9.
Bone ; 46(2): 514-23, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19815105

RESUMO

S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.


Assuntos
Diferenciação Celular , Metilação de DNA , Osteoblastos/citologia , Osteoblastos/metabolismo , Adenosina/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Azacitidina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metilação de DNA/efeitos dos fármacos , Humanos , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ativação Transcricional/efeitos dos fármacos
10.
Bone ; 39(4): 724-38, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16774856

RESUMO

A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly modulated by Runx2 in calvaria, forelimbs and hindlimbs, respectively. Bioinformatics analysis indicated that Runx2 not only controls the processes of osteoblast differentiation and chondrocyte maturation, but may also play a role in axon formation and hematopoietic cell commitment during bone development. A total of 41 genes are affected by the Runx2 deletion in both intramembranous and endochondral bone, indicating common pathways between these two developmental modes of bone formation. In addition, we identified genes that are specifically involved in endochondral ossification. In conclusion, our data show that a comparative genome-wide expression analysis of wild-type and mutant mouse models allows the examination of mutant phenotypes in complex tissues.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteogênese/genética , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Feminino , Membro Anterior/embriologia , Membro Anterior/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/embriologia , Membro Posterior/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Crânio/embriologia , Crânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA