Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956378

RESUMO

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.

2.
Cell Rep Med ; 3(10): 100783, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260981

RESUMO

Harnessing innate immunity is emerging as a promising therapeutic approach in cancer. We report here the design of tetraspecific molecules engaging natural killer (NK) cell-activating receptors NKp46 and CD16a, the ß-chain of the interleukin-2 receptor (IL-2R), and a tumor-associated antigen (TAA). In vitro, these tetraspecific antibody-based natural killer cell engager therapeutics (ANKETs) induce a preferential activation and proliferation of NK cells, and the binding to the targeted TAA triggers NK cell cytotoxicity and cytokine and chemokine production. In vivo, tetraspecific ANKETs induce NK cell proliferation and their accumulation at the tumor bed, as well as the control of local and disseminated tumors. Treatment of non-human primates with CD20-directed tetraspecific ANKET leads to CD20+ circulating B cell depletion, with minimal systemic cytokine release and no sign of toxicity. Tetraspecific ANKETs, thus, constitute a technological platform for harnessing NK cells as next-generation cancer immunotherapies.


Assuntos
Interleucina-2 , Neoplasias , Animais , Interleucina-2/genética , Células Matadoras Naturais , Receptores de Interleucina-2/metabolismo , Citocinas , Neoplasias/genética , Quimiocinas/metabolismo
3.
Mol Metab ; 51: 101231, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33831593

RESUMO

OBJECTIVE: GPR64/ADGRG2 is an orphan Adhesion G protein-coupled receptor (ADGR) known to be mainly expressed in the parathyroid gland and epididymis. This investigation aimed to delineate the cellular expression of GPR64 throughout the body with focus on the gastrointestinal (GI) tract. METHODS: Transgenic Gpr64mCherry reporter mice were histologically examined throughout the body and reporter protein expression in intestinal tuft cells was confirmed by specific cell ablation. The GPCR repertoire of intestinal Gpr64mCherry-positive tuft cells was analyzed by quantitative RT-PCR analysis and in situ hybridization. The Gpr64mCherry was crossed into the general tuft cell reporter Trpm5GFP to generate small intestinal organoids for time-lapse imaging. Intestinal tuft cells were isolated from small intestine, FACS-purified and transcriptionally compared using RNA-seq analysis. RESULTS: Expression of the Gpr64mCherry reporter was identified in multiple organs and specifically in olfactory microvillous cells, enteric nerves, and importantly in respiratory and GI tuft cells. In the small intestine, cell ablation targeting Gpr64-expressing epithelial cells eliminated tuft cells. Transcriptional analysis of small intestinal Gpr64mCherry -positive tuft cells confirmed expression of Gpr64 and the chemo-sensors Sucnr1, Gprc5c, Drd3, and Gpr41/Ffar3. Time-lapse studies of organoids from Trpm5GFP:Gpr64mCherry mice revealed sequential expression of initially Trpm5GFP and subsequently also Gpr64mCherry in maturing intestinal tuft cells. RNA-seq analysis of small intestinal tuft cells based on these two markers demonstrated a dynamic change in expression of transcription factors and GPCRs from young to mature tuft cells. CONCLUSIONS: GPR64 is expressed in chemosensory epithelial cells across a broad range of tissues; however, in the GI tract, GPR64 is remarkably selectively expressed in mature versus young immunoregulatory tuft cells.


Assuntos
Células Quimiorreceptoras/metabolismo , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Intestino Delgado/citologia , Masculino , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética
4.
Clin Cancer Res ; 23(22): 7097-7107, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855355

RESUMO

Purpose: Understanding tumor heterogeneity is an important challenge in current cancer research. Transcription and epigenetic profiling of cultured melanoma cells have defined at least two distinct cell phenotypes characterized by distinctive gene expression signatures associated with high or low/absent expression of microphthalmia-associated transcription factor (MITF). Nevertheless, heterogeneity of cell populations and gene expression in primary human tumors is much less well characterized.Experimental Design: We performed single-cell gene expression analyses on 472 cells isolated from needle biopsies of 5 primary human melanomas, 4 superficial spreading, and one acral melanoma. The expression of MITF-high and MITF-low signature genes was assessed and compared to investigate intra- and intertumoral heterogeneity and correlated gene expression profiles.Results: Single-cell gene expression analyses revealed varying degrees of intra- and intertumor heterogeneity conferred by the variable expression of distinct sets of genes in different tumors. Expression of MITF partially correlated with that of its known target genes, while SOX10 expression correlated best with PAX3 and ZEB2 Nevertheless, cells simultaneously expressing MITF-high and MITF-low signature genes were observed both by single-cell analyses and RNAscope.Conclusions: Single-cell analyses can be performed on limiting numbers of cells from primary human melanomas revealing their heterogeneity. Although tumors comprised variable proportions of cells with the MITF-high and MITF-low gene expression signatures characteristic of melanoma cultures, primary tumors also comprised cells expressing markers of both signatures defining a novel cell state in tumors in vivoClin Cancer Res; 23(22); 7097-107. ©2017 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Melanoma/genética , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Adulto , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA