Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(6): 890-902, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642432

RESUMO

Nearly 30% of patients with relapsed breast cancer present activating mutations in estrogen receptor alpha (ERα) that confer partial resistance to existing endocrine-based therapies. We previously reported the development of H3B-5942, a covalent ERα antagonist that engages cysteine-530 (C530) to achieve potency against both wild-type (ERαWT) and mutant ERα (ERαMUT). Anticipating that the emergence of C530 mutations could promote resistance to H3B-5942, we applied structure-based drug design to improve the potency of the core scaffold to further enhance the antagonistic activity in addition to covalent engagement. This effort led to the development of the clinical candidate H3B-6545, a covalent antagonist that is potent against both  ERαWT/MUT, and maintains potency even in the context of ERα C530 mutations. H3B-6545 demonstrates significant activity and superiority over standard-of-care fulvestrant across a panel of ERαWT and ERαMUT palbociclib sensitive and resistant models. In summary, the compelling preclinical activity of H3B-6545 supports its further development for the potential treatment of endocrine therapy-resistant ERα+ breast cancer harboring wild-type or mutant ESR1, as demonstrated by the ongoing clinical trials (NCT03250676, NCT04568902, NCT04288089). SUMMARY: H3B-6545 is an ERα covalent antagonist that exhibits encouraging preclinical activity against CDK4/6i naïve and resistant ERαWT and ERαMUT tumors.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ensaios Clínicos como Assunto , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/uso terapêutico , Humanos , Indazóis , Recidiva Local de Neoplasia , Piridinas
2.
ACS Med Chem Lett ; 11(6): 1305-1309, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551016

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) is a potential synthetic lethal target in LKB1-deficient nonsmall cell lung cancer, where its overexpression supports the production of pyrimidine synthesis. In other cancer types, CPS1 overexpression and activity may prevent the accumulation of toxic levels of intratumoral ammonia to support tumor growth. Herein we report the discovery of a novel series of potent and selective small-molecule inhibitors of CPS1. Piperazine 2 was initially identified as a promising CPS1 inhibitor through a high-throughput screening effort. Subsequent structure-activity relationship optimization and structure-based drug design led to the discovery of piperazine H3B-616 (25), a potent allosteric inhibitor of CPS1 (IC50 = 66 nM).

3.
Cell Chem Biol ; 27(3): 259-268.e5, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32017919

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piperidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tiazóis/farmacologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Piperidinas/química , Bibliotecas de Moléculas Pequenas/química , Tiazóis/química
4.
J Biol Chem ; 294(45): 16966-16977, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31582562

RESUMO

DNMT3A (DNA methyltransferase 3A) is a de novo DNA methyltransferase responsible for establishing CpG methylation patterns within the genome. DNMT3A activity is essential for normal development, and its dysfunction has been linked to developmental disorders and cancer. DNMT3A is frequently mutated in myeloid malignancies with the majority of mutations occurring at Arg-882, where R882H mutations are most frequent. The R882H mutation causes a reduction in DNA methyltransferase activity and hypomethylation at differentially-methylated regions within the genome, ultimately preventing hematopoietic stem cell differentiation and leading to leukemogenesis. Although the means by which the R882H DNMT3A mutation reduces enzymatic activity has been the subject of several studies, the precise mechanism by which this occurs has been elusive. Herein, we demonstrate that in the context of the full-length DNMT3A protein, the R882H mutation stabilizes the formation of large oligomeric DNMT3A species to reduce the overall DNA methyltransferase activity of the mutant protein as well as the WT-R882H complex in a dominant-negative manner. This shift in the DNMT3A oligomeric equilibrium and the resulting reduced enzymatic activity can be partially rescued in the presence of oligomer-disrupting DNMT3L, as well as DNMT3A point mutations along the oligomer-forming interface of the catalytic domain. In addition to modulating the oligomeric state of DNMT3A, the R882H mutation also leads to a DNA-binding defect, which may further reduce enzymatic activity. These findings provide a mechanistic explanation for the observed loss of DNMT3A activity associated with the R882H hot spot mutation in cancer.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Mutação , Multimerização Proteica , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína
5.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29991605

RESUMO

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Indazóis/administração & dosagem , Mutação , Administração Oral , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Indazóis/química , Indazóis/farmacologia , Células MCF-7 , Camundongos , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Antimicrob Agents Chemother ; 57(7): 3358-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23650168

RESUMO

Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). A good correlation between PI4KIIIß activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIß inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIß inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIß were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIß is deleterious.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Cefalosporinas/farmacologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/enzimologia , Tiazóis/farmacologia , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Antivirais/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Resfriado Comum/tratamento farmacológico , Resfriado Comum/virologia , Feminino , Células HeLa , Humanos , Camundongos , Oximas , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA Interferente Pequeno , Rhinovirus/crescimento & desenvolvimento , Sulfonamidas , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
7.
Virology ; 387(1): 5-10, 2009 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-19304308

RESUMO

A functional screen of an adenovirus-delivered shRNA library that targets approximately 4500 host genes was performed to identify cellular factors that regulate hepatitis C virus (HCV) sub-genomic RNA replication. Seventy-three hits were further examined by siRNA oligonucleotide-directed knockdown, and silencing of the PI4KA gene was demonstrated to have a significant effect on the replication of a HCV genotype 1b replicon. Using transient siRNA oligonucleotide transfections and stable shRNA knockdown clones in HuH-7 cells, the PI4KA gene was shown to be essential for the replication of all HCV genotypes tested (1a, 1b and 2a) but not required for bovine viral diarrhea virus (BVDV) RNA replication.


Assuntos
Hepacivirus/fisiologia , Hepatite C/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Viral/genética , Replicação Viral/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/fisiologia , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genoma Viral , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes
8.
Chem Biol ; 13(11): 1183-91, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17114000

RESUMO

Four adjacent open reading frames, cytC1-C4, were cloned from a cytotrienin-producing strain of a Streptomyces sp. by using primers derived from the conserved region of a gene encoding a nonheme iron halogenase, CmaB, in coronamic acid biosynthesis. CytC1-3 were active after expression in Escherichia coli, and CytC4 was active after expression in Pseudomonas putida. CytC1, a relatively promiscuous adenylation enzyme, installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. CytC3 is a nonheme iron halogenase that will generate both gamma-chloro- and gamma,gamma-dichloroaminobutyryl-S-CytC2 from aminobutyryl-S-CytC2. CytC4, a thioesterase, hydrolytically releases the dichloroaminobutyrate, a known streptomycete antibiotic. Thus, this short four-protein pathway is likely the biosynthetic source of this amino acid antimetabolite. This four-enzyme system analogously converts the proS-methyl group of valine to the dichloromethyl product regio- and stereospecifically.


Assuntos
Antimetabólitos/metabolismo , Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/metabolismo , Família Multigênica , Peptídeo Sintases/metabolismo , Pseudomonas putida/metabolismo
9.
Nature ; 440(7082): 368-71, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16541079

RESUMO

Non-haem Fe(II)/alpha-ketoglutarate (alphaKG)-dependent enzymes harness the reducing power of alphaKG to catalyse oxidative reactions, usually the hydroxylation of unactivated carbons, and are involved in processes such as natural product biosynthesis, the mammalian hypoxic response, and DNA repair. These enzymes couple the decarboxylation of alphaKG with the formation of a high-energy ferryl-oxo intermediate that acts as a hydrogen-abstracting species. All previously structurally characterized mononuclear iron enzymes contain a 2-His, 1-carboxylate motif that coordinates the iron. The two histidines and one carboxylate, known as the 'facial triad', form one triangular side of an octahedral iron coordination geometry. A subclass of mononuclear iron enzymes has been shown to catalyse halogenation reactions, rather than the more typical hydroxylation reaction. SyrB2, a member of this subclass, is a non-haem Fe(II)/alphaKG-dependent halogenase that catalyses the chlorination of threonine in syringomycin E biosynthesis. Here we report the structure of SyrB2 with both a chloride ion and alphaKG coordinated to the iron ion at 1.6 A resolution. This structure reveals a previously unknown coordination of iron, in which the carboxylate ligand of the facial triad is replaced by a chloride ion.


Assuntos
Proteínas de Bactérias/biossíntese , Ferro/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Pseudomonas syringae/enzimologia , Proteínas de Bactérias/química , Sítios de Ligação , Cloretos/metabolismo , Cristalografia por Raios X , Histidina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligantes , Modelos Moleculares , Conformação Proteica , Pseudomonas syringae/classificação , Pseudomonas syringae/metabolismo
10.
Chem Biol ; 12(11): 1189-200, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16298298

RESUMO

The first 6 residues of the biosurfactant lipopeptidolactone arthrofactin have the D configuration, yet none of the 11 modules of the nonribosomal peptide synthetase assembly line have epimerization domains. We show that the two-module ArfA subunit and the first module of the ArfB subunit, which act in tandem to produce the N-acyl-D-Leu1-D-Asp2-D-Thr3-S-protein intermediate, activate the L amino acids and epimerize them as the aminoacyl-S-pantetheinyl T domain intermediates before the next downstream condensation. The condensation (C) domains are shown to have (D)C(L) chirality in peptide bond formation. The upstream aminoacyl/peptidyl moiety is epimerized before condensation only when the condensation domains are simultaneously presented with the L-aminoacyl-S-pantetheinyl acceptor. These (D)C(L) catalysts are dual function condensation/epimerization domains that can be predicted by bioinformatics analysis to be responsible for incorporation of all D residues in arthrofactin and of D residues in syringomycin, syringopeptin, and ramoplanin synthetases.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Acetilação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Expressão Gênica , Ligases/química , Ligases/genética , Ligases/metabolismo , Lipopeptídeos , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos Cíclicos/genética , Filogenia , Pseudomonas/genética , Racemases e Epimerases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estereoisomerismo
11.
Nature ; 436(7054): 1191-4, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16121186

RESUMO

Enzymatic incorporation of chlorine, bromine or iodine atoms occurs during the biosynthesis of more than 4,000 natural products. Halogenation can have significant consequences for the bioactivity of these products so there is great interest in understanding the biological catalysts that perform these reactions. Enzymes that halogenate unactivated aliphatic groups have not previously been characterized. Here we report the activity of five proteins-CmaA, CmaB, CmaC, CmaD and CmaE-in the construction of coronamic acid (CMA; 1-amino-1-carboxy-2-ethylcyclopropane), a constituent of the phytotoxin coronatine synthesized by the phytopathogenic bacterium Pseudomonas syringae. CMA derives from l-allo-isoleucine, which is covalently attached to CmaD through the actions of CmaA, a non-ribosomal peptide synthetase module, and CmaE, an unusual acyltransferase. We show that CmaB, a member of the non-haem Fe(2+), alpha-ketoglutarate-dependent enzyme superfamily, is the first of its class to show halogenase activity, chlorinating the gamma-position of l-allo-isoleucine. Another previously undescribed enzyme, CmaC, catalyses the formation of the cyclopropyl ring from the gamma-Cl-l-allo-isoleucine product of the CmaB reaction. Together, CmaB and CmaC execute gamma-halogenation followed by intramolecular gamma-elimination, in which biological chlorination is a cryptic strategy for cyclopropyl ring formation.


Assuntos
Aminoácidos/biossíntese , Proteínas de Bactérias/metabolismo , Cloro/metabolismo , Enzimas/química , Enzimas/metabolismo , Ferro/metabolismo , Aciltransferases/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Catálise , Heme , Indenos/química , Indenos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Pseudomonas syringae/metabolismo , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA