Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(22): 4722-4735.e5, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34626566

RESUMO

Rapid protein degradation enables cells to quickly modulate protein abundance. Dysregulation of short-lived proteins plays essential roles in disease pathogenesis. A focused map of short-lived proteins remains understudied. Cycloheximide, a translational inhibitor, is widely used in targeted studies to measure degradation kinetics for short-lived proteins. Here, we combined cycloheximide chase assays with advanced quantitative proteomics to map short-lived proteins under translational inhibition in four human cell lines. Among 11,747 quantified proteins, we identified 1,017 short-lived proteins (half-lives ≤ 8 h). These short-lived proteins are less abundant, evolutionarily younger, and less thermally stable than other proteins. We quantified 103 proteins with different stabilities among cell lines. We showed that U2OS and HCT116 cells express truncated forms of ATRX and GMDS, respectively, which have lower stability than their full-length counterparts. This study provides a large-scale resource of human short-lived proteins under translational arrest, leading to untapped avenues of protein regulation for therapeutic interventions.


Assuntos
Proteínas/química , Proteoma , Proteômica/métodos , Alanina/análogos & derivados , Alanina/química , Linhagem Celular , Linhagem Celular Tumoral , Cicloeximida/química , Cicloeximida/farmacologia , Fucose/química , Geminina/química , Células HCT116 , Células HEK293 , Humanos , Peptídeos/química , Análise de Componente Principal , Biossíntese de Proteínas , Proteínas/efeitos dos fármacos , Controle de Qualidade , RNA Interferente Pequeno/metabolismo , Telômero/química
2.
Cell ; 180(5): 968-983.e24, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109415

RESUMO

Mammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo. We use Oximouse to establish several paradigms of physiological redox signaling. We define and validate cysteine redox networks within each tissue that are tissue selective and underlie tissue-specific biology. We describe a common mechanism for encoding cysteine redox sensitivity by electrostatic gating. Moreover, we comprehensively identify redox-modified disease networks that remodel in aged mice, establishing a systemic molecular basis for the long-standing proposed links between redox dysregulation and tissue aging. We provide the Oximouse compendium as a framework for understanding mechanisms of redox regulation in physiology and aging.


Assuntos
Envelhecimento/genética , Cisteína/genética , Proteínas/genética , Proteoma/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Cisteína/metabolismo , Humanos , Camundongos , Especificidade de Órgãos/genética , Oxirredução , Estresse Oxidativo/genética , Proteômica/métodos , Espécies Reativas de Oxigênio , Transdução de Sinais/genética
3.
J Cell Biol ; 218(9): 2982-3001, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31320392

RESUMO

The unidirectional and opposite-polarity microtubule-based motors, dynein and kinesin, drive long-distance intracellular cargo transport. Cellular observations suggest that opposite-polarity motors may be coupled. We recently identified an interaction between the cytoplasmic dynein-1 activating adaptor Hook3 and the kinesin-3 KIF1C. Here, using in vitro reconstitutions with purified components, we show that KIF1C and dynein/dynactin can exist in a complex scaffolded by Hook3. Full-length Hook3 binds to and activates dynein/dynactin motility. Hook3 also binds to a short region in the "tail" of KIF1C, but unlike dynein/dynactin, this interaction does not activate KIF1C. Hook3 scaffolding allows dynein to transport KIF1C toward the microtubule minus end, and KIF1C to transport dynein toward the microtubule plus end. In cells, KIF1C can recruit Hook3 to the cell periphery, although the cellular role of the complex containing both motors remains unknown. We propose that Hook3's ability to scaffold dynein/dynactin and KIF1C may regulate bidirectional motility, promote motor recycling, or sequester the pool of available dynein/dynactin activating adaptors.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Linhagem Celular Tumoral , Dineínas/genética , Humanos , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética
4.
Mol Cell Biol ; 32(12): 2268-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22493067

RESUMO

The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.


Assuntos
Adipócitos/enzimologia , Diferenciação Celular , eIF-2 Quinase/metabolismo , Adipócitos/citologia , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Ativação Enzimática , Metabolismo dos Lipídeos , Camundongos , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 3-Quinases , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Mol Cell Biol ; 31(22): 4513-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21911473

RESUMO

Skp1-Cul1-F-box (SCF) E3 ubiquitin ligase complexes modulate the accumulation of key cell cycle regulatory proteins. Following the G(1)/S transition, SCF(Fbx4) targets cyclin D1 for proteasomal degradation, a critical event necessary for DNA replication fidelity. Deregulated cyclin D1 drives tumorigenesis, and inactivating mutations in Fbx4 have been identified in human cancer, suggesting that Fbx4 may function as a tumor suppressor. Fbx4(+/-) and Fbx4(-/-) mice succumb to multiple tumor phenotypes, including lymphomas, histiocytic sarcomas and, less frequently, mammary and hepatocellular carcinomas. Tumors and premalignant tissue from Fbx4(+/-) and Fbx4(-/-) mice exhibit elevated cyclin D1, an observation consistent with cyclin D1 as a target of Fbx4. Molecular dissection of the Fbx4 regulatory network in murine embryonic fibroblasts (MEFs) revealed that loss of Fbx4 results in cyclin D1 stabilization and nuclear accumulation throughout cell division. Increased proliferation in early passage primary MEFs is antagonized by DNA damage checkpoint activation, consistent with nuclear cyclin D1-driven genomic instability. Furthermore, Fbx4(-/-) MEFs exhibited increased susceptibility to Ras-dependent transformation in vitro, analogous to tumorigenesis observed in mice. Collectively, these data reveal a requisite role for the SCF(Fbx4) E3 ubiquitin ligase in regulating cyclin D1 accumulation, consistent with tumor suppressive function in vivo.


Assuntos
Transformação Celular Neoplásica , Ciclina D1/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Ciclina D1/biossíntese , Ciclina D1/genética , Dano ao DNA , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
6.
Cancer Cell ; 18(4): 329-40, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20951943

RESUMO

Cyclin D1 elicits transcriptional effects through inactivation of the retinoblastoma protein and direct association with transcriptional regulators. The current work reveals a molecular relationship between cyclin D1/CDK4 kinase and protein arginine methyltransferase 5 (PRMT5), an enzyme associated with histone methylation and transcriptional repression. Primary tumors of a mouse lymphoma model exhibit increased PRMT5 methyltransferase activity and histone arginine methylation. Analyses demonstrate that MEP50, a PRMT5 coregulatory factor, is a CDK4 substrate, and phosphorylation increases PRMT5/MEP50 activity. Increased PRMT5 activity mediates key events associated with cyclin D1-dependent neoplastic growth, including CUL4 repression, CDT1 overexpression, and DNA rereplication. Importantly, human cancers harboring mutations in Fbx4, the cyclin D1 E3 ligase, exhibit nuclear cyclin D1 accumulation and increased PRMT5 activity.


Assuntos
Núcleo Celular/enzimologia , Proteínas Culina/metabolismo , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas Culina/genética , Metilação de DNA , Replicação do DNA , Ativação Enzimática , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Linfoma/enzimologia , Linfoma/genética , Linfoma/patologia , Camundongos , Neoplasias/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA