Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Front Cardiovasc Med ; 6: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921893

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy and fibrosis. Studies in two mouse models (R92W-TnT/R403Q-MyHC) at early HCM stage revealed upregulation of endothelin (ET1) signaling in both mutants, but TGFß signaling only in TnT mutants. Dysregulation of miR-29 expression has been implicated in cardiac fibrosis. But it is unknown whether expression of miR-29a/b/c and profibrotic genes is commonly regulated in mouse and human HCM. Methods: In order to understand mechanisms underlying fibrosis in HCM, and examine similarities/differences in expression of miR-29a/b/c and several profibrotic genes in mouse and human HCM, we performed parallel studies in rat cardiac myocyte/fibroblast cultures, examined gene expression in two mouse models of (non-obstructive) HCM (R92W-TnT, R403Q-MyHC)/controls at early (5 weeks) and established (24 weeks) disease stage, and analyzed publicly available mRNA/miRNA expression data from obstructive-HCM patients undergoing septal myectomy/controls (unused donor hearts). Results: Myocyte cultures: ET1 increased superoxide/H2O2, stimulated TGFß expression/secretion, and suppressed miR-29a expression in myocytes. The effect of ET1 on miR-29 and TGFß expression/secretion was antagonized by N-acetyl-cysteine, a reactive oxygen species scavenger. Fibroblast cultures: ET1 had no effect on pro-fibrotic gene expression in fibroblasts. TGFß1/TGFß2 suppressed miR-29a and increased collagen expression, which was abolished by miR-29a overexpression. Mouse and human HCM: Expression of miR-29a/b/c was lower, and TGFB1/collagen gene expression was higher in TnT mutant-LV at 5 and 24 weeks; no difference was observed in expression of these genes in MyHC mutant-LV and in human myectomy tissue. TGFB2 expression was higher in LV of both mutant mice and human myectomy tissue. ACE2, a negative regulator of the renin-angiotensin-aldosterone system, was the most upregulated transcript in human myectomy tissue. Pathway analysis predicted upregulation of the anti-hypertrophic/anti-fibrotic liver X receptor/retinoid X receptor (LXR/RXR) pathway only in human myectomy tissue. Conclusions: Our in vitro studies suggest that activation of ET1 signaling in cardiac myocytes increases reactive oxygen species and stimulates TGFß secretion, which downregulates miR-29a and increases collagen in fibroblasts, thus contributing to fibrosis. Our gene expression studies in mouse and human HCM reveal allele-specific differences in miR-29 family/profibrotic gene expression in mouse HCM, and activation of anti-hypertrophic/anti-fibrotic genes and pathways in human HCM.

3.
JACC Basic Transl Sci ; 2(5): 543-560, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29520378

RESUMO

Adult stem cells demonstrate metabolic flexibility that is regulated by cell adhesion status. The authors demonstrate that adherent cells primarily utilize glycolysis, whereas suspended cells rely on oxidative phosphorylation for their ATP needs. Akt phosphorylation transduces adhesion-mediated regulation of energy metabolism, by regulating translocation of glucose transporters (GLUT1) to the cell membrane and thus, cellular glucose uptake and glycolysis. Cell dissociation, a pre-requisite for cell transplantation, leads to energetic stress, which is mediated by Akt dephosphorylation, downregulation of glucose uptake, and glycolysis. They designed hydrogels that promote rapid cell adhesion of encapsulated cells, Akt phosphorylation, restore glycolysis, and cellular ATP levels.

4.
Biomaterials ; 73: 1-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378976

RESUMO

BACKGROUND: Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. OBJECTIVE: We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. METHODS: The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of (18)FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. RESULTS: HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. CONCLUSION: HA:Ser hydrogels serve as 'synthetic stem cell niches' that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types.


Assuntos
Materiais Biocompatíveis/química , Ácido Hialurônico/química , Hidrogéis/química , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Transplante de Células , Ecocardiografia , Módulo de Elasticidade , Células-Tronco Embrionárias/citologia , Feminino , Fluordesoxiglucose F18/química , Glucose/química , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Imagem Multimodal , Miocárdio/metabolismo , Neovascularização Patológica , Ratos , Ratos Endogâmicos WKY , Transplante de Células-Tronco/instrumentação , Engenharia Tecidual , Alicerces Teciduais , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
5.
Circ Res ; 112(3): 441-50, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255420

RESUMO

RATIONALE: Molecular imaging is useful for longitudinal assessment of engraftment. However, it is not known which factors, other than cell number, can influence the molecular imaging signal obtained from reporter genes. OBJECTIVE: The effects of cell dissociation/suspension on cellular bioenergetics and the signal obtained by firefly luciferase and human sodium-iodide symporter labeling of cardiosphere-derived cells were investigated. METHODS AND RESULTS: (18)Fluorodeoxyglucose uptake, ATP levels, (99m)Tc-pertechnetate uptake, and bioluminescence were measured in vitro in adherent and suspended cardiosphere-derived cells. In vivo dual-isotope single-photon emission computed tomography/computed tomography imaging or bioluminescence imaging (BLI) was performed 1 hour and 24 hours after cardiosphere-derived cell transplantation. Single-photon emission computed tomography quantification was performed using a phantom for signal calibration. Cell loss between 1 hour and 24 hours after transplantation was quantified by quantitative polymerase chain reaction and ex vivo luciferase assay. Cell dissociation followed by suspension for 1 hour resulted in decreased glucose uptake, cellular ATP, (99m)Tc uptake, and BLI signal by 82%, 43%, 42%, and 44%, respectively, compared with adherent cells, in vitro. In vivo (99m)Tc uptake was significantly lower at 1 hour compared with 24 hours after cell transplantation in the noninfarct (P<0.001; n=3) and infarct (P<0.001; n=4) models, despite significant cell loss during this period. The in vivo BLI signal was significantly higher at 1 hour than at 24 hours (P<0.01), with the BLI signal being higher when cardiosphere-derived cells were suspended in glucose-containing medium compared with saline (PBS). CONCLUSIONS: Adhesion is an important determinant of cellular bioenergetics, (99m)Tc-pertechnetate uptake, and BLI signal. BLI and sodium-iodide symporter imaging may be useful for in vivo optimization of bioenergetics in transplanted cells.


Assuntos
Rastreamento de Células/métodos , Metabolismo Energético , Genes Reporter , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Processamento de Sinais Assistido por Computador , Simportadores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Adesão Celular , Modelos Animais de Doenças , Fluordesoxiglucose F18/metabolismo , Regulação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Luciferases de Vaga-Lume/genética , Masculino , Imagem Multimodal , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/diagnóstico por imagem , Reação em Cadeia da Polimerase , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo , Ratos , Ratos Endogâmicos WKY , Pertecnetato Tc 99m de Sódio/metabolismo , Esferoides Celulares , Simportadores/genética , Fatores de Tempo , Tomografia Computadorizada por Raios X , Transfecção
6.
Biomaterials ; 33(32): 8026-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22898181

RESUMO

Tissue engineering-based approaches have the potential to improve stem cell engraftment by increasing cell delivery to the myocardium. Our objective was to develop and characterize a naturally-derived, autologous, biodegradable hydrogel in order to improve acute stem cell retention in the myocardium. HA-blood hydrogels (HA-BL) were synthesized by mixing in a 1:1(v/v) ratio, lysed whole blood and hyaluronic acid (HA), whose carboxyl groups were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS). We performed physical characterization and measured survival/proliferation of cardiosphere-derived cells (CDCs) encapsulated in the hydrogels. Hydrogels were injected intra-myocardially or applied epicardially in rats. NHS-activated carboxyl groups in HA react with primary amines present in blood and myocardium to form amide bonds, resulting in a 3D hydrogel bound to tissue. HA-blood hydrogels had a gelation time of 58±12 s, swelling ratio of 10±0.5, compressive and elastic modulus of 14±3 and 1.75±0.6 kPa respectively. These hydrogels were not degraded at 4 wks by hydrolysis alone. CDC encapsulation promoted their survival and proliferation. Intra-myocardial injection of CDCs encapsulated in these hydrogels greatly increased acute myocardial retention (p=0.001). Epicardial application of HA-blood hydrogels improved left ventricular ejection fraction following myocardial infarction (p=0.01). HA-blood hydrogels are highly adhesive, biodegradable, promote CDC survival and increase cardiac function following epicardial application after myocardial infarction.


Assuntos
Células Sanguíneas/química , Ácido Hialurônico/química , Hidrogéis/química , Miocárdio/citologia , Plasma/química , Transplante de Células-Tronco , Alicerces Teciduais/química , Animais , Células Sanguíneas/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Módulo de Elasticidade , Feminino , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Plasma/metabolismo , Ratos , Ratos Endogâmicos WKY , Ratos Nus , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA