Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299000

RESUMO

Cancer is a serious health problem due to the complexity of establishing an effective treatment. The purpose of this work was to evaluate the activity of a triazaspirane as a migration and invasion inhibitor in PC3 prostatic tumor cells through a possible negative regulation of the FAK/Src signal transduction pathway and decreased secretion of metalloproteinases 2 and 9. Molecular docking analysis was performed using Moe 2008.10 software. Migration (wound-healing assay) and invasion (Boyden chamber assay) assays were performed. In addition, the Western blot technique was used to quantify protein expression, and the zymography technique was used to observe the secretion of metalloproteinases. Molecular docking showed interactions in regions of interest of the FAK and Src proteins. Moreover, the biological activity assays demonstrated an inhibitory effect on cell migration and invasion, an important suppression of metalloproteinase secretion, and a decrease in the expression of p-FAK and p-Src proteins in treated PC3 cells. Triazaspirane-type molecules have important inhibitory effects on the mechanisms associated with metastasis in PC3 tumor cells.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Processos Neoplásicos , Movimento Celular , Metaloproteases/farmacologia , Invasividade Neoplásica
2.
Materials (Basel) ; 14(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668741

RESUMO

New medical devices with anti-inflammatory properties are critical to prevent inflammatory processes and infections in medical/surgical procedures. In this work, we present a novel functionalization of silicone for medical use with a polymeric prodrug and a thermosensitive polymer, by graft polymerization (gamma rays), for the localized release of salicylic acid, an analgesic, and anti-inflammatory drug. Silicone rubber (SR) films were functionalized in two stages using graft polymerization from ionizing radiation (60Co). The first stage was grafting poly(N-vinylcaprolactam) (PNVCL), a thermo-sensitive polymer, onto SR to obtain SR-g-PNVCL. In the second stage, poly(2-methacryloyloxy-benzoic acid) (P2MBA), a polymeric prodrug, was grafted to obtain (SR-g-PNVCL)-g-P2MBA. The degree of functionalization depended on the concentrations of monomers and the irradiation dose. The films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM-EDX), thermogravimetric analysis (TGA), and contact angle. An upper critical solution temperature (UCST) of the films was demonstrated by the swelling degree as a temperature function. (SR-g-PNVCL)-g-P2MBA films demonstrated hydrolysis-mediated drug release from the polymeric prodrug, pH, and temperature sensitivity. GC-MS confirmed the presence of the drug (salicylic acid), after polymer hydrolysis. The concentration of the drug in the release media was quantified by HPLC. Cytocompatibility and thermo-/pH sensitivity of functionalized medical silicone were demonstrated in cancer and non-cancer cells.

3.
Rev. argent. microbiol ; 51(2): 103-109, jun. 2019. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1013358

RESUMO

In the present work, the biosynthesis of silver-nanoparticles (AgNP) was evaluated using the aqueous extract from Justicia spicigera. The obtained silver nanoparticles were characterized using UV-visible spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The antimicrobial activity of biosynthesized AgNP was tested against foodborne bacteria (Bacillus cereus, Klebsiella pneumoniae and Enterobacter aerogenes) and phytopathogenic fungi (Colletotrichum sp., Fusarium solani, Alternaria alternata and Macrophomina phaseolina). The elemental profile of synthesized nanoparticles using J. spicigera shows higher counts at 3 keV due to silver, confirming the formation of silver nanoparticles. Scanning electron microscopy (SEM) analysis showed a particle size between 86 and 100 nm with spherical morphology. AgNP showed effective antibacterial and antifungal activity against the tested organisms principally with B. cereus, K. pneumoniae, E. aerogenes, A. alternata and M. phaseolina. Therefore, further studies are needed to confirm the potential of AgNP from J. spicigera in the control of indicator organisms under field conditions.


En el presente trabajo se evaluó la biosíntesis de nanopartículas de plata (AgNP) en presencia de una sal de plata y extractos acuosos de Justicia spicigera. Las nanopartículas así obtenidas fueron caracterizadas mediante técnicas espectroscópicas UV-visibles, espectrómetros de rayos X de energía dispersiva (EDS), potencial zeta y dispersión de luz dinámica. La actividad antimicrobiana de las AgNP biosintetizadas se probó frente a diversas bacterias transmitidas por alimentos (Bacillus cereus, Klebsiella pneumoniae y Enterobacter aerogenes) y hongos fitopatógenos (Colletotrichum sp., Fusarium solani, Alternaria alternata y Macrophomina phaseolina). El perfil elemental de las nanopartículas sintetizadas utilizando el extracto de J. spicigera mostró valores altos a 3 keV, lo que confirma la formación de nanopartículas de plata. El análisis por microscopía electrónica de barrido (SEM) reveló un tamaño de partícula entre 86 y 100 nm, con morfología esférica. Las AgNP mostraron una actividad antibacteriana y antifúngica efectiva contra los organismos evaluados, principalmente contra B. cereus, K. pneumoniae, E. aerogenes, A. alternata y M. phaseolina. Se necesitan más estudios para confirmar el potencial de las AgNP derivadas de J. spicigera en el control de organismos indicadores en condiciones de campo.


Assuntos
Prata/uso terapêutico , Controle Biológico de Vetores , Nanopartículas Metálicas/análise , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Anti-Infecciosos , Antifúngicos
4.
Open Life Sci ; 14: 62-68, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33817138

RESUMO

The present study was conducted to evaluate the impact of monometallic and bimetallic nanoparticles (NPs) of copper (Cu) and silver (Ag) from Justicia spicigera on the photochemical efficiency and phenol pattern of Prosopis glandulosa. In this study, the existence of localized surface plasmon resonance absorption associated with the nano-sized nature of Ag, Cu and Cu/Ag particles was confirmed by the presence of a single peak around 487, 585, and 487/580 nm respectively. Zeta potential and electrophoretic mobility were found to be 0.2 mV and 0.02 µmcm/(Vs) for synthesized NPs indicating less stability and thus tendency to agglomerate, and broad distribution of particles. Cu-NPs and Cu/Ag-NPs demonstrate that the dispersed phase is stable and has a minimum particle size at zeta potentials above -30 mV. Changes in phenolic compounds, total chlorophyll, and photochemical efficiency in leaves exposed to Ag, Cu and Cu/Ag phyto-nanoparticles were evaluated up to 72 hours. The results revealed that Ag-NP and Cu-NP from J. spicigera at 100 mg/L showed significant reduction in chlorophyll, epidermal polyphenol content and photochemical efficiency of P. glandulosa. In contrast, the application of bimetallic Cu/Ag-NP from J. spicigera showed a positive impact on physiological parameters of P. glandulosa after 72 h of exposure.

5.
J Nanobiotechnology ; 15(1): 10, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143540

RESUMO

BACKGROUND: Neovascularization over dental implants is an imperative requisite to achieve successful osseointegration onto implanted materials. The aim of this study was to investigate the effects on in vitro angiogenesis of anodized 70 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy synthesized and disinfected by means of a novel, facile, antibacterial and cost-effective method using super oxidized water (SOW). We also evaluated the role of the surface roughness and chemical composition of materials of materials on angiogenesis. METHODS: The Ti6Al4V alloy and a commercially pure Ti were anodized using a solution constituted by SOW and fluoride as electrolyte. An acid-etched Ti6Al4V was evaluated to compare the effect of micro-surface roughness. Mirror-polished materials were used as control. Morphology, roughness, chemistry and wettability were assessed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy (EDX) and using a professional digital camera. Bovine coronary artery endothelial cells (BCAECs) were seeded over the experimental surfaces for several incubation times. Cellular adhesion, proliferation and monolayer formation were evaluated by means of SEM. BCAEC viability, actin stress fibers and vinculin cellular organization, as well as the angiogenic receptors vascular endothelial growth factor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) were measured using fluorescence microscopy. RESULTS: The anodization process significantly increased the roughness, wettability and thickness of the oxidized coating. EDX analysis demonstrated an increased oxygen (O) and decreased carbon (C) content on the NTs of both materials. Endothelial behavior was solidly supported and improved by the NTs (without significant differences between Ti and alloy), showing that endothelial viability, adhesion, proliferation, actin arrangement with vinculin expression and monolayer development were evidently stimulated on the nanostructured surface, also leading to increased activation of VEGFR2 and eNOS on Ti6Al4V-NTs compared to the control Ti6Al4V alloy. Although the rougher alloy promoted BCAECs viability and proliferation, filopodia formation was poor. CONCLUSION: The in vitro results suggest that 70 nm diameter NTs manufactured by anodization and cleaned using SOW promotes in vitro endothelial activity, which may improve in vivo angiogenesis supporting a faster clinical osseointegration process.


Assuntos
Indutores da Angiogênese/farmacologia , Nanotubos/química , Neovascularização Fisiológica/efeitos dos fármacos , Titânio/química , Ligas , Animais , Bovinos , Adesão Celular , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Implantes Dentários , Células Endoteliais/efeitos dos fármacos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Óxido Nítrico Sintase Tipo III/metabolismo , Tamanho da Partícula , Espectrometria por Raios X , Propriedades de Superfície , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA