Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742194

RESUMO

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Assuntos
Doença de Alzheimer , Apolipoproteína E3 , Apolipoproteína E4 , Estradiol , Camundongos Transgênicos , Ovariectomia , Animais , Estradiol/farmacologia , Feminino , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Comportamento Animal/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
2.
J Neuroendocrinol ; 35(2): e13209, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420620

RESUMO

Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Apolipoproteínas E/genética , Apolipoproteínas E/uso terapêutico , Estrogênios/uso terapêutico , Menopausa , Apolipoproteína E4/genética , Genótipo
3.
Curr Top Med Chem ; 17(6): 708-720, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27320328

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques, composed of amyloid-beta peptide (Aß) and neurofibrillary tangles, composed of aberrantly phosphorylated tau. APOE4 is the greatest genetic risk factor for AD, increasing risk up to 12- fold with a double allele compared to APOE3. In contrast, APOE2 reduces AD risk ~2-fold per allele. Accumulating evidence demonstrates that apolipoprotein E4 (apoE4) plays a multifactorial role in AD pathogenesis, although the exact mechanisms remain unclear. Further data support roles for apoE4 as a toxic gain of function or loss of positive function in AD, a discrepancy that has significant implications for the future of apoE-directed therapeutics. However, recent evidence repurposing retinoid X receptor (RXR) agonists, or rexinoids, for the treatment of AD demonstrates conflicting, though potentially beneficial effects in familial AD-transgenic (FAD-Tg) mouse models. Of particular note is bexarotene (Targretin®), a selective rexinoid previously utilized in cancer treatment emerging as a viable candidate for AD clinical trials. However, the mechanism of action of bexarotene and similar rexinoids remains controversial, particularly in the context of human APOE. In addition, rexinoids demonstrate distinct adverse event profiles in humans that may have greater detrimental effects in an elderly AD population. Therefore, this special issue review discusses the implications for rexinoiddirected therapeutic strategies in AD, the potential mechanistic targets, and future directions for the improvement of rexinoid-based therapies in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apolipoproteínas E/metabolismo , Retinoides/uso terapêutico , Doença de Alzheimer/metabolismo , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-26612994

RESUMO

The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1-500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25-50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent.

5.
Toxicol In Vitro ; 28(7): 1206-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24929095

RESUMO

Increasing evidence suggests that brain cytochrome P450 (CYP) can contribute to the in situ metabolism of xenobiotics. In the liver, some xenobiotics can be metabolized by CYPs into more reactive products that can damage hepatocytes and induce cell death. In addition, normal CYP activity may produce reactive oxygen species (ROS) that contribute to cell damage through oxidative mechanisms. CYP2E1 is a CYP isoform that can generate ROS leading to cytotoxicity in multiple tissue types. The aim of this study was to determine whether CYP2E1 induction may lead to significant brain cell impairment. Immunological analysis revealed that exposure of primary cerebellar granule neuronal cultures to the CYP inducer isoniazid, increased CYP2E1 expression. In the presence of buthionine sulfoximine, an agent that reduces glutathione levels, isoniazid treatment also resulted in reactive oxygen species (ROS) production, DNA oxidation and cell death. These effects were attenuated by simultaneous exposure to diallyl sulfide, a CYP2E1 inhibitor, or to a mimetic of superoxide dismutase/catalase, (Euka). These results suggest that in cases of reduced antioxidant levels, the induction of brain CYP2E1 could represent a risk of in situ neuronal damage.


Assuntos
Indutores do Citocromo P-450 CYP2E1/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Glutationa/metabolismo , Isoniazida/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , DNA/metabolismo , Neurônios/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA