Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785934

RESUMO

Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2-4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Camundongos Endogâmicos C57BL , Proteínas Musculares , Músculo Esquelético , Proteólise , Animais , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Camundongos , Proteínas Musculares/metabolismo , Proteínas Musculares/biossíntese , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Etanol , Estresse Psicológico/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo
2.
Alcohol ; 104: 45-52, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35926812

RESUMO

Excessive ethanol ingestion can reduce skeletal muscle protein synthesis (MPS) through the disruption of signaling along the Akt-mTOR pathway and increase muscle protein degradation (MPD) through the Ubiquitin Proteasome Pathway (UPP) and autophagy. Identification of interventions that curb the disrupting effects of alcohol misuse on MPS and MPD are of central importance for the prevention of chronic health complications that arise from muscle loss. Physical activity is one potential strategy to combat the deleterious effects of alcohol on skeletal muscle. Therefore, the purpose of this study was to investigate the interaction between daily wheel running and binge-patterned ethanol consumption, through episodes of voluntary binge-patterned ethanol drinking, on signaling factors along the Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways. Adult female C57BL/6J mice received daily access to cages with or without running wheels for 2.5 h/day for five weeks. During the final five days of the study, mice received 2-4 h of daily access to sipper tubes containing water (n = 14 sedentary; n = 15 running) or 20% ethanol (n = 14 sedentary; n = 16 running) 30 min after running wheel access, using the "Drinking in the Dark" (DID) model of binge-patterned ethanol consumption. Immediately after the final episode of DID, gastrocnemius muscle was extracted. Western blotting was performed to measure proteins along Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways, and PCR was used to assess mRNA expression of atrogenes. Ethanol access increased expression of MAFbx by 82% (p = 0.048), but did not robustly influence Akt-mTOR or UPP signaling. Daily wheel access did not prevent alcohol-induced MAFbx expression; however, ethanol access decreased the phosphorylation of p70S6K by 45% in running mice (p = 0.020). These results suggest that physical activity may be insufficient to prevent alcohol-induced changes to signaling factors along pathways involved in muscle loss. Instead, binge-patterned ethanol ingestion may impair the benefits of physical activity on factors involved in MPS.


Assuntos
Proteínas Musculares , Complexo de Endopeptidases do Proteassoma , Camundongos , Feminino , Animais , Proteínas Musculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Etanol/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Ubiquitinas/metabolismo
3.
Med Sci Sports Exerc ; 54(8): 1288-1299, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35389948

RESUMO

PURPOSE: Chronic exercise training is known to induce metabolic changes, but whether these adaptations extend to lymphocytes and how this may affect immune function remains largely unknown. This study was conducted to determine the extent to which mitochondrial characteristics of naïve T cells differ according to fitness status and to further examine the energy production pathways of cells from aerobically trained and inactive participants. METHODS: Blood was collected from 30 aerobically active (>6 h·wk -1 ) or inactive (<90 min·wk -1 ) men and women. Naïve T cell mitochondrial mass, membrane potential, and biogenesis were assessed with flow cytometry. Participants completed a treadmill maximal oxygen consumption (V̇O 2peak ) test and wore a physical activity monitor for 1 wk. In a subset of participants, naïve CD8 + T cell activation-induced glycolytic and mitochondrial ATP production was measured. RESULTS: Active participants exhibited 16.7% more naïve CD8 + T cell mitochondrial mass ( P = 0.046), 34% greater daily energy expenditure ( P < 0.001), and 39.6% higher relative V̇O 2peak ( P < 0.001), along with 33.9% lower relative body fatness ( P < 0.001). Among all participants, naïve CD8 + T cell mitochondrial mass was correlated with estimated energy expenditure ( r = 0.36, P = 0.048) and V̇O 2peak ( r = 0.47, P = 0.009). There were no significant differences in ATP production, mitochondrial biogenesis, or mitochondrial membrane potential between active and inactive groups. CONCLUSIONS: This is the first study to examine the effects of aerobic exercise training status on metabolic parameters within human naïve T cells. Findings suggest that mitochondrial adaptations in certain immune cell types are positively associated with aerobic fitness and energy expenditure. This study provides a foundation for future development of prophylactic and therapeutic interventions targeting specific immune cell subsets to improve the immune response and overall health.


Assuntos
Exercício Físico , Linfócitos T , Trifosfato de Adenosina , Adulto , Metabolismo Energético , Exercício Físico/fisiologia , Teste de Esforço , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Aptidão Física/fisiologia , Comportamento Sedentário
4.
PLoS One ; 15(11): e0240885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141822

RESUMO

Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM. We analyzed whether whole egg consumption in Zucker Diabetic Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and prefrontal cortex tissue. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+) (n = 12) were obtained at 6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein (w/w). TotalRNA libraries were prepared using QuantSeq 3' mRNA-Seq and Lexogen smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%. We identified 9 microRNAs and 583 genes that were differentially expressed in response to 8 wk of consuming whole egg-based diets. Kyto Encyclopedia of Genes and Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole egg consumption primarily altered glutathione pathways such as conjugation, methylation, glucuronidation, and detoxification of reactive oxygen species. These pathways are often negatively affected during T2DM, therefore this data provides unique insight into the nutrigenomic response of dietary whole egg consumption during the progression of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ovos , Glutationa/metabolismo , Nutrigenômica , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Ovos/efeitos adversos , Perfilação da Expressão Gênica , Masculino , Redes e Vias Metabólicas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Zucker , Distribuição Tecidual , Regulação para Cima
5.
Biomed Pharmacother ; 128: 110238, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450522

RESUMO

Muscle atrophy is the loss of skeletal muscle mass during several pathological conditions such as long-term fasting, aging, cancer, diabetes, sepsis and immune disorders. Glucocorticoids are known to trigger skeletal muscle atrophy. Dexamethasone (DEX), a synthetic glucocorticoid, induces skeletal muscle atrophy by suppression of protein synthesis and promotion of protein degradation. The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) plays a significant role in mediating lipopolysaccharide-induced inflammation. However, pathological roles of PKR in muscle atrophy are not fully understood. The current study aimed to investigate the effect of imoxin, a PKR inhibitor, on DEX-induced muscle atrophy in C2C12 myotubes. Myotubes were incubated with imoxin at different concentrations with or without 5 µM DEX for 24 h. In the current study, imoxin treatment significantly reduced protein levels of MuRF1 and MAFbx induced by DEX by 88 ± 2% and MAFbx by 99 ± 0%, respectively. Moreover, 5 µM imoxin treatment reduced protein ubiquitination by 42 ± 4% and protein content of nuclear FoxO3α (77 ± 4%) in presence of DEX. Furthermore, 5 µM imoxin treatment stimulated Akt phosphorylation (195 ± 5%), mTOR phosphorylation (171 ± 21 %) and p70S6K1 phosphorylation (314 ± 31 %) under DEX-treated condition even though DEX treatment did not suppressed Akt/mTOR/p70S6K1 axis. These findings suggest that imoxin may protect against DEX-induced skeletal muscle atrophy by alleviating muscle specific E3 ubiquitin ligases and imoxin alone may promote protein synthesis via Akt/mTOR/S6K1 axis in muscle cells.


Assuntos
Anabolizantes/farmacologia , Dexametasona/toxicidade , Imidazóis/farmacologia , Indóis/farmacologia , Atrofia Muscular/prevenção & controle , Mioblastos Esqueléticos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , eIF-2 Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Proteína Forkhead Box O3/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/enzimologia , Atrofia Muscular/patologia , Mioblastos Esqueléticos/enzimologia , Mioblastos Esqueléticos/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/metabolismo , eIF-2 Quinase/metabolismo
6.
Physiol Rep ; 6(23): e13941, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30548229

RESUMO

The double-stranded RNA-dependent protein kinase (PKR) contributes to inflammatory cytokine expression and disease pathogenesis in many conditions. Limited data are available on the efficacy of the PKR inhibitor imoxin to prevent lipopolysaccharide (LPS)-induced inflammation in skeletal muscle in vivo. The aim of this study was to evaluate the effect of imoxin, a PKR inhibitor, on inflammatory and atrophy signaling in skeletal muscle in response to an acute inflammatory insult with LPS. Six-week old C57BL/6J mice received vehicle (saline) or 0.5 mg/kg imoxin 24 and 2 h prior to induction of inflammation via 1 mg/kg LPS. Gastrocnemius muscles were collected 24 h post-LPS and mRNA and protein expression were assessed. LPS lead to a loss of body weight, which was similar in Imoxin+LPS. There were no differences in muscle weight among groups. LPS increased gastrocnemius mRNA expression of TNF-α and IL-1ß, and protein levels of NLRP3, all of which were attenuated by imoxin. Similarly, IL-6 mRNA and IL-1ß protein were suppressed in Imoxin+LPS compared to LPS alone. LPS increased mRNA of the atrogenes, MuRF1 and MAFbx, and imoxin attenuated the LPS-induced increase in MuRF1 mRNA, and lowered MuRF1 protein. Imoxin+LPS increased p-Akt compared to saline or LPS, whereas p-mTOR was unaltered. FoxO1 was upregulated and p-FoxO1/FoxO1 reduced by LPS, both of which were prevented by imoxin. Both LPS and Imoxin+LPS had diminished p-FoxO3/FoxO3 compared to control. These results demonstrate the potential anti-inflammatory and anti-atrophy effects of imoxin on skeletal muscle in vivo.


Assuntos
Anti-Inflamatórios/farmacologia , Imidazóis/farmacologia , Indóis/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteínas com Motivo Tripartido/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
J Anim Sci ; 96(1): 154-167, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29432553

RESUMO

Heat-related complications continue to be a major health concern for humans and animals and lead to potentially life-threatening conditions. Heat stress (HS) alters metabolic parameters and may alter glucose metabolism and insulin signaling. Therefore, the purpose of this investigation was to determine the extent to which 12 h of HS-altered energetic metabolism in oxidative skeletal muscle. To address this, crossbred gilts (n = 8/group) were assigned to one of three environmental treatments for 12 h: thermoneutral (TN; 21 °C), HS (37 °C), or pair-fed to HS counterparts but housed in TN conditions (PFTN). Following treatment, animals were euthanized and the semitendinosus red (STR) was recovered. Despite increased relative protein abundance of the insulin receptor, insulin receptor substrate (IRS1) phosphorylation was increased (P = 0.0005) at S307, an inhibitory site, and phosphorylated protein kinase B (AKT) (S473) was decreased (P = 0.03) likely serving to impair insulin signaling following 12 h of HS. Further, HS increased phosphorylated protein kinase C (PKC) ζ/λ (P = 0.02) and phosphorylated PKCδ/θ protein abundance (P = 0.02), which are known to regulate inhibitory serine phosphorylation of IRS1 (S307). Sarcolemmal glucose transporter 4 (Glut4) was decreased (P = 0.04) in the membrane fraction of HS skeletal muscle suggesting diminished glucose uptake capacity. HS-mediated increases (P = 0.04) in mechanistic target of rapamycin (mTOR) were not accompanied by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). HS decreased (P = 0.0006) glycogen synthase (GS) and increased (P = 0.02) phosphorylated GS suggesting impaired glycogen synthesis. In addition, HS altered fatty acid metabolic signaling by increasing (P = 0.02) Acetyl-CoA carboxylase (ACC), decreasing (P = 0.005) phosphorylated ATP-citrate lyase (pATPCL) and fatty acid synthase (P = 0.01) (FAS). These data suggest that 12 h of HS blunted insulin signaling, decreased protein synthesis, and altered glycogen and fatty acid metabolism.


Assuntos
Metabolismo Energético , Insulina/metabolismo , Transdução de Sinais , Estresse Fisiológico , Suínos/fisiologia , Animais , Ácidos Graxos/metabolismo , Feminino , Glicogênio/metabolismo , Temperatura Alta/efeitos adversos , Isoenzimas/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
8.
Arch Biochem Biophys ; 623-624: 49-57, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526426

RESUMO

AMP-activated protein kinase (AMPK) is an enzyme crucial in cellular metabolism found to be inhibited in many metabolic diseases including type 2 diabetes. Thiazolidinediones (TZDs) are a class of anti-diabetic drug known to activate AMPK through increased phosphorylation at Thr172, however there has been no research to date on whether they have any effect on inhibition of AMPK's lesser known site of inhibition, Ser485/491. HepG2 cells were treated with troglitazone and phosphorylation of AMPK was found to increase at both Thr172 and Ser485 in a dose- and time-dependent manner. Treatment of HepG2 cells with insulin and PMA led to increases in p-AMPK Ser485 via Akt and PKD1 respectively; however these kinases were not found to be implicated in increases seen from troglitazone. Incubation with the other TZDs, rosiglitazone and pioglitazone, let to a minor increase in p-AMPK Ser485 phosphorylation as well as AMPK activity; however these findings were significantly less than those of troglitazone under equal conditions. These data suggest that the effects of troglitazone on AMPK are more complex than previously thought. Phosphorylation at sites of both activation and inhibition can occur in tandem, although the mechanism by which this occurs has not yet been elucidated.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cromanos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Tiazolidinedionas/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Pioglitazona , Rosiglitazona , Troglitazona
9.
Arch Biochem Biophys ; 562: 62-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172224

RESUMO

Recent studies have highlighted the importance of an inhibitory phosphorylation site, Ser(485/491), on the α-subunit of AMP-activated protein kinase (AMPK); however, little is known about the regulation of this site in liver and skeletal muscle. We examined whether the inhibitory effects of insulin on AMPK activity may be mediated through the phosphorylation of this inhibitory Ser(485/491) site in hepatocytes, myotubes and incubated skeletal muscle. HepG2 and C2C12 cells were stimulated with or without insulin for 15-min. Similarly, rat extensor digitorum longus (EDL) muscles were treated +/- insulin for 10-min. Insulin significantly increased Ser(485/491) p-AMPK under all conditions, resulting in a subsequent reduction in AMPK activity, ranging from 40% to 70%, despite no change in p-AMPK Thr(172). Akt inhibition both attenuated the increase in Ser(485/491) p-AMPK caused by insulin, and prevented the decrease in AMPK activity. Similarly, the growth factor IGF-1 stimulated Ser(485/491) AMPK phosphorylation, and this too was blunted by inhibition of Akt. Inhibition of the mTOR pathway with rapamycin, however, had no effect on insulin-stimulated Ser(485/491) p-AMPK. These data suggest that insulin and IGF-1 diminish AMPK activity in hepatocytes and muscle, most likely through Akt activation and the inhibitory phosphorylation of Ser(485/491) on its α-subunit.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Serina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia
10.
Diabetes Metab Syndr Obes ; 7: 241-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018645

RESUMO

Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, ß-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly - some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D.

11.
Curr Obes Rep ; 3(2): 248-55, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24891985

RESUMO

Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances.

12.
Am J Physiol Cell Physiol ; 303(1): C4-C13, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378745

RESUMO

AMP-activated protein kinase (AMPK) and the NAD(+)-dependent histone/protein deacetylase sirtuin 1 (SIRT1) are metabolic sensors that can increase each other's activity. They are also both activated by the antidiabetic drug metformin and downregulated in the liver under conditions of nutrient excess (e.g., hyperglycemia, high-fat diet, obesity). In these situations, the abundance of the tumor suppressor p53 is increased; however, the relevance of this to the changes in AMPK and SIRT1 is not known. In the present study we investigated this question in HepG2 cells under high glucose conditions. Metformin induced activation of AMPK and SIRT1 and decreased p53 protein abundance. It also decreased triglyceride accumulation and cytosolic oxidative stress (a trigger for p53 accumulation) and increased the deacetylation of p53 at a SIRT1-targeted site. The decrease in p53 abundance caused by metformin was abolished by inhibition of murine double minute 2 (MDM2), a ubiquitin ligase that mediates p53 degradation, as well as by overexpression of a dominant-negative AMPK or a shRNA-mediated knockdown of SIRT1. In addition, overexpression of p53 decreased SIRT1 gene expression and protein abundance, as well as AMPK activity in metformin-treated cells. It also diminished the triglyceride-lowering action of metformin, an effect that was rescued by incubation with the SIRT1 activator SRT2183. Collectively, these findings suggest the existence of a novel reciprocal interaction between AMPK/SIRT1 and p53 that may have implications for the pathogenesis and treatment of metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/farmacologia , Metformina/farmacologia , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Glucose/metabolismo , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno , Sirtuína 1/genética , Triglicerídeos/biossíntese
13.
J Lipid Res ; 53(4): 792-801, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323564

RESUMO

We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4(+) mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific.


Assuntos
Adenilato Quinase/metabolismo , Tecido Adiposo/patologia , Regulação Enzimológica da Expressão Gênica , Resistência à Insulina , Obesidade Mórbida/genética , Estresse Oxidativo , Adenilato Quinase/genética , Tecido Adiposo/metabolismo , Adulto , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Índice de Massa Corporal , Ativação Enzimática , Feminino , Homeostase , Humanos , Inflamação/genética , Inflamação/metabolismo , Insulina/genética , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Mediators Inflamm ; 2012: 767953, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23319832

RESUMO

We aimed to determine the effects of 6 wks of exercise on inflammatory markers in mice concomitantly fed either high-fat (HF) or normal chow (NC) diets in young mice. C57BL/6 mice were randomized into (n = 10/group) an NC/sedentary (NC/SED), NC/exercise (NC/EX), HF/SED, and HF/EX groups. Treadmill exercise was performed 5 d/wk at 12 m/min, with 12% grade for 40 min/d. Liver triglycerides and gene expression of F4/80, MCP-1, TNF-α, leptin, and VEGF in visceral white adipose were determined. NC groups had lower body weights after 6 wks versus the HF groups (22.8 ± 0.2 versus 25.7 ± 0.4 g) (P < 0.0001). F4/80 gene expression (indicator of macrophage infiltration) and liver triglycerides were greatest amongst the HF/SED group, with no differences between the remaining groups. VEGF (indicator of angiogenesis) was greatest in the HF/EX versus the other 3 groups (P < 0.05). Exposure of an HF diet in sedentary young mice increased visceral adipose depots and liver triglycerides versus an NC diet. Exercise training while on the HF diet protected against hepatic steatosis and possibly macrophage infiltration within white adipose tissue. This suggests that moderate exercise while on an HF diet can offer some level of protection early on in the development of obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Inflamação/prevenção & controle , Condicionamento Físico Animal , Animais , Antígenos de Diferenciação/genética , Peso Corporal , Quimiocina CCL2/genética , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Tamanho do Órgão , Fator de Necrose Tumoral alfa/genética , Fator A de Crescimento do Endotélio Vascular/genética
15.
Brain Behav Immun ; 25(7): 1482-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21693185

RESUMO

Persistent feelings of fatigue are a widespread complaint reported by older adults, and are associated with detriments in health and quality of life. The aim of this study was to determine the influence of weight status, habitual physical activity and inflammation, after controlling for common psychosocial variables such as depression, on perceptions of fatigue in relatively healthy older adults. Older men and women (N=182, age=69.2±6.7 years, 98 men) were assessed for adiposity via dual-energy X-ray absorptiometry, physical activity (PA) using accelerometers, systemic inflammation [serum C-reactive protein (CRP), interleukin-6 (IL-6), sIL-6R and WBC count], fatigue according to the Multidimensional Fatigue Inventory (MFI), sleep using the Pittsburgh Sleep Quality Index (PSQI) and depression via the Geriatric Depression Scale (GDS). Men and women reported similar levels of fatigue in all dimensions (p>0.05) except women reported higher levels of mental fatigue than men (p=0.049). With the exception of mental fatigue, adiposity was positively, and physical activity was inversely associated with all other dimension of fatigue (r range=0.20-0.42, and -0.18 to -0.37, respectively). CRP, IL-6 and WBC were also related to several dimensions of fatigue (r range=0.15-0.26). Regression analyses revealed that after controlling for other factors, including depression and sleep quality, adiposity independently explained a significant amount of the variance in general and physical fatigue. In addition to depression and sleep quality, adiposity may represent a potential target for reducing fatigue in older adults.


Assuntos
Adiposidade/fisiologia , Fadiga/fisiopatologia , Inflamação/fisiopatologia , Atividade Motora/fisiologia , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/metabolismo , Fadiga/sangue , Fadiga/complicações , Feminino , Humanos , Inflamação/sangue , Inflamação/complicações , Interleucina-6/sangue , Masculino , Fadiga Mental/sangue , Fadiga Mental/complicações , Fadiga Mental/fisiopatologia , Pessoa de Meia-Idade , Qualidade de Vida , Fatores Sexuais , Sono
16.
Appl Physiol Nutr Metab ; 36(1): 72-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21326380

RESUMO

To examine the relative association of physical activity, cardiorespiratroy fitness (CRF), and adiposity with risk for metabolic disease in prepubescent children. Forty-six prepubescent children (age, 9.4 ± 1.7 years; 24 males) were assessed for adiposity (%fat) via dual-energy X-ray absorptiometry, CRF with a peak graded exercise test, and physical activity using pedometers. Metabolic disease risk was assessed by a composite score of the following factors: waist circumference (WC), mean arterial pressure (MAP), triacylglycerol (TAG), total cholesterol to high-density lipoprotein cholesterol ratio (TC/HDL-C ratio), glucose, and insulin. Adiposity was correlated with metabolic disease risk score, as well as homeostasis model assessment of insulin resistance (HOMA-IR), TAG, TC/HDL-C ratio, WC, insulin, and MAP (r range = 0.33 to 0.95, all p < 0.05). Physical activity was negatively associated with metabolic disease risk score, as well as HOMA-IR, TAG, WC, insulin, and MAP (r range = -0.32 to -0.49, all p < 0.05). CRF was inversely associated with metabolic disease risk score and HOMA-IR, TAG, TC/HDL-C ratio, WC, insulin, and MAP (r range = -0.32 to -0.63, all p < 0.05). Compared across fitness-physical activity and fatness groups, the low-fit-high-fat and the low-activity-high-fat groups had higher metabolic risk scores than both low-fat groups. Regression analyses revealed sexual maturity (ß = 0.27, p = 0.044) and %fat (ß = 0.49, p = 0.005) were the only independent predictors of metabolic disease risk score, explaining 4.7% and 9.5% of the variance, respectively. Adiposity appears to be an influential factor for metabolic disease risk in prepubescent children, and fitness is protective against metabolic disease risk in the presence of high levels of adiposity.


Assuntos
Adiposidade , Composição Corporal , Síndrome Metabólica/complicações , Atividade Motora , Obesidade/complicações , Aptidão Física , Absorciometria de Fóton/métodos , Análise de Variância , Glicemia/metabolismo , Criança , HDL-Colesterol/sangue , Feminino , Humanos , Insulina/sangue , Resistência à Insulina , Modelos Lineares , Masculino , Obesidade/metabolismo , Consumo de Oxigênio , Fatores de Risco , Triglicerídeos/sangue , Circunferência da Cintura
17.
J Bone Miner Res ; 26(4): 769-76, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20939066

RESUMO

Current theory on the influence of breast cancer on bone describes metastasis of tumor cells to bone tissue, followed by induction of osteoclasts and bone degradation. Tumor influences on bone health in pre- or nonmetastatic models are unknown. Female rats (n = 48, 52 days old) were injected with N-methyl-N-nitrosourea (MNU) to induce breast cancer. Animals were euthanized 10 weeks later, and tumors were weighed and classified histologically. Right femurs were extracted for testing of bone mineral density (BMD) by dual X-ray absorptiometry (DXA), bone mechanical strength by three-point bending and femoral neck bending tests, and structure by micro-computed tomography (µCT). Of 48 rats, 22 developed one or more tumors in response to MNU injection by 10 weeks. Presence of any tumor predicted significantly poorer bone health in 17 of 28 measures. In tumored versus nontumored animals, BMD was adversely affected by 3%, force at failure of the femoral midshaft by 4%, force at failure of the femoral neck by 12%, and various trabecular structural parameters by 6% to 27% (all p < .05). Similarly, greater tumor burden, represented by total tumor weight, adversely correlated with bone outcomes: r = -0.51 for BMD, -0.42 and -0.35 for femur midshaft force and work at failure, and between 0.36 and 0.59 (absolute values) for trabecular architecture (all p < .05). Presence of MNU-induced tumors and total tumor burden showed a negative association with bone health of the femur in rats in the absence of metastasis. Further study is required to elucidate mechanisms for this association.


Assuntos
Adenocarcinoma/induzido quimicamente , Doenças Ósseas/etiologia , Osso e Ossos/patologia , Calcificação Fisiológica , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/complicações , Metilnitrosoureia/farmacologia , Adenocarcinoma/complicações , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Animais , Peso Corporal , Densidade Óssea , Doenças Ósseas/patologia , Osso e Ossos/química , Diáfises/química , Diáfises/patologia , Epífises/química , Epífises/patologia , Feminino , Fêmur/química , Fêmur/patologia , Neoplasias Mamárias Experimentais/diagnóstico , Neoplasias Mamárias Experimentais/patologia , Fenômenos Mecânicos , Metilnitrosoureia/administração & dosagem , Metástase Neoplásica , Ratos , Ratos Sprague-Dawley
18.
Nutr Metab (Lond) ; 7: 1, 2010 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20148110

RESUMO

Breast cancer is the most prevalent cancer in American women. Dietary factors are thought to have a strong influence on breast cancer incidence. This study utilized a meal-feeding protocol with female Sprague-Dawley rats to evaluate effects of two ratios of carbohydrate:protein on promotion and early progression of breast tissue carcinomas. Mammary tumors were induced by N-methyl-N-nitrosourea (MNU) at 52 d of age. Post-induction, animals were assigned to consume either a low protein high carbohydrate diet (LPHC; 15% and 60% of energy, respectively) or a high protein moderate carbohydrate diet (HPMC; 35% and 40% of energy, respectively) for 10 wk. Animals were fed 3 meals/day to mimic human absorption and metabolism patterns. The rate of palpable tumor incidence was reduced in HPMC relative to LPHC (12.9 +/- 1.4%/wk vs. 18.2 +/- 1.3%/wk). At 3 wk, post-prandial serum insulin was larger in the LPHC relative to HPMC (+136.4 +/- 33.1 pmol/L vs. +38.1 +/- 23.4 pmol/L), while at 10 wk there was a trend for post-prandial IGF-I to be increased in HPMC (P = 0.055). There were no differences in tumor latency, tumor surface area, or cumulative tumor mass between diet groups. The present study provides evidence that reducing the dietary carbohydrate:protein ratio attenuates the development of mammary tumors. These findings are consistent with reduced post-prandial insulin release potentially diminishing the proliferative environment required for breast cancer tumors to progress.

19.
J Am Geriatr Soc ; 55(5): 747-51, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17493195

RESUMO

OBJECTIVES: To examine the independent effect of parasympathetic tone (PST), assessed here according to heart rate recovery (HRR) after exercise, on circulating levels of C-reactive protein (CRP) in 132 elderly participants. DESIGN: Cross-sectional analysis using baseline data from an ongoing trial assessing the effects of exercise on immune function. SETTING: Champaign/Urbana, Illinois, vicinity. PARTICIPANTS: Community-living older adults who had been sedentary for 6 months or longer. Major exclusion criteria were current use of medications that could interfere with immunity, severe arthritis, history of cancer or inflammatory disease, recent illness or vaccination, and smoking. MEASUREMENTS: Participants were assessed for serum CRP (using enzyme-linked immunosorbent assay), cardiorespiratory fitness (peak oxygen intake (VO(2))), HRR, percentage body fat (using dual-energy x-ray absorptiometry), physical activity level (according to the Physical Activity Scale for the Elderly (PASE)), fasting plasma glucose, kidney function (creatinine level), and perceived stress. RESULTS: Mean CRP level+/-standard deviation was 3.81+/-2.7 mg/L, placing this group in a high-risk category. After adjusting for the effects of body fat (34.6%+/-7.4%), aspirin use, VO(2) peak (19.5+/-3.9 mL oxygen/kg per minute), PASE, sex (64% women), and perceived stress, HRR was the only independent predictor of CRP (beta=-0.257, P=.003, change in coefficient of determination=0.060). CONCLUSION: HRR after exercise appears to be independently associated with lower CRP in older sedentary individuals, suggesting that the parasympathetic nervous system is involved in regulating chronic inflammation in older adults. Improvements in PST, as a result of regular physical exercise, may contribute to the antiinflammatory effects of exercise, independent of physical fitness or fatness.


Assuntos
Proteína C-Reativa/metabolismo , Exercício Físico , Frequência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Sistema Nervoso Parassimpático/fisiologia , Aptidão Física
20.
J Mol Endocrinol ; 37(1): 25-38, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16901921

RESUMO

In humans, circulating GH levels are increased in catabolic states and suppressed in obesity. In both extremes, normalization of the metabolic environment normalizes GH release, leading to the conclusion that changes in metabolic hormones and/or metabolites promote changes in GH synthesis and release. Metabolic regulation of GH secretion can be mediated centrally by modulation of hypothalamic GHRH and somatostatin input to the pituitary and/or by direct regulation of pituitary somatotrope function. Although data are available showing glucocorticoids, free fatty acids (FFA), IGF-I, and insulin have direct effects on rat somatotrope function, little information is available regarding the direct pituitary effects of these metabolic factors in primates. Therefore, this study examined the effects of glucocorticoids (dexamethasone (0.1-100 nM) and hydrocortisone (10 nM)), FFA (oleic and linoleic acid, 100 and 400 microM each), IGF-I (0.5-50 nM), and insulin (0.5-50 nM) on GH release and GH, GHRH-receptor (GHRH-R) and ghrelin-receptor (GHS-R) mRNA levels, in primary pituitary cell cultures of baboons (Papio anubis) after 24 h treatment. A commercial ELISA kit was used to determine the amount of GH released into the media, while quantitative real-time reverse transcription-PCR was used to determine mRNA levels. To design species-specific primers for baboon GH, GHRH-R, GHS-R, insulin receptor (INSR), IGF-I receptor (IGF-IR), pituitary-specific transcription factor-1 (Pit-1), and cyclophilin A (used as a housekeeping gene) cDNA, sequence data for each baboon transcript were obtained and this data were submitted to Genbank. Glucocorticoids, FFA, insulin and IGF-I treatment did not significantly alter the expression of Pit-1, a transcription factor essential for normal somatotrope development and function. However, as previously reported in the rat, glucocorticoids increased, while FFA, IGF-I and insulin decreased GH release in baboon pituitary cell cultures, where changes in GH release were reflected by comparable changes in GH mRNA levels. In addition, glucocorticoids increased, while FFA, IGF-I and insulin decreased the expression of the GH stimulatory receptors, GHRH-R and GHS-R, without significantly altering cyclophilin A mRNA levels. A role of insulin/INSR pathway, independent of IGF-I, in regulating pituitary function is supported by the fact that (1) IGF-I and insulin significantly suppressed somatotrope function at doses (0.5 and 5 nM respectively) not anticipated to activate their respective receptors, and (2) the baboon pituitary expresses INSR mRNA at levels comparable to or greater than that of tissues commonly considered as insulin sensitive (i.e. liver, skeletal muscle, and fat). Taken together, these results demonstrate that metabolic factors can directly modulate primate somatotrope function through regulating GH synthesis and release, as well as mediating the expression of receptors important in central (GHRH) and systemic (ghrelin) regulation of GH secretion.


Assuntos
Hormônio do Crescimento/metabolismo , Papio anubis , Somatotrofos/fisiologia , Animais , Células Cultivadas , Ciclofilina A/genética , Ciclofilina A/metabolismo , Dexametasona/farmacologia , Feminino , Glucocorticoides/farmacologia , Humanos , Hidrocortisona/farmacologia , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Ácido Linoleico/farmacologia , Dados de Sequência Molecular , Ácido Oleico/farmacologia , Ratos , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Grelina , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Somatotrofos/citologia , Somatotrofos/efeitos dos fármacos , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA