Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 24(3): 406-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379280

RESUMO

HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR; however, their polarization and function remain unclear. In this study, we utilized an in vitro Transwell coculture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA-activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2 macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2 macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2 macrophages within the neointima of CAV-affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2 macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.


Assuntos
Receptor 4 Toll-Like , Doenças Vasculares , Humanos , Metaloproteinase 9 da Matriz , Selectina-P , Macrófagos , Endotélio , Antígenos HLA , Aloenxertos , Imunoglobulina G
2.
Transplantation ; 108(1): 115-126, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218026

RESUMO

Improving long-term allograft survival and minimizing recipient morbidity is of key importance in all of transplantation. Improved matching of classical HLA molecules and avoiding HLA donor-specific antibody has been a major focus; however, emerging data suggest the relevance of nonclassical HLA molecules, major histocompatibility complex class I chain-related gene A (MICA) and B, in transplant outcomes. The purpose of this review is to discuss the structure, function, polymorphisms, and genetics of the MICA molecule and relates this to clinical outcomes in solid organ and hematopoietic stem cell transplantation. The tools available for genotyping and antibody detection will be reviewed combined with a discussion of their shortcomings. Although data supporting the relevance of MICA molecules have accumulated, key knowledge gaps exist and should be addressed before widespread implementation of MICA testing for recipients pre- or posttransplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe I/genética , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Complexo Principal de Histocompatibilidade , Teste de Histocompatibilidade
3.
Front Immunol ; 14: 1328533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274830

RESUMO

The contribution of alloresponses to mismatched HLA-DP in solid organ transplantation and hematopoietic stem cell transplantation (HCT) has been well documented. Exploring the regulatory mechanisms of DPB1 alleles has become an important question to be answered. In this study, our initial investigation focused on examining the correlation between the rs9277534G/A SNP and DPB1 mRNA expression. The result showed that there was a significant increase in DPB1 mRNA expression in B lymphoblastoid cell lines (BLCLs) with the rs9277534GG genotype compared to rs9277534AA genotype. In addition, B cells with the rs9277534GG exhibited significantly higher DP protein expression than those carrying the rs9277534AA genotype in primary B cells. Furthermore, we observed a significant upregulation of DP expression in B cells following treatment with Interleukin 13 (IL-13) compared to untreated B cells carrying rs9277534GG-linked DPB1 alleles. Fluorescence in situ hybridization (FISH) analysis of DPB1 in BLCL demonstrated significant differences in both the cytoplasmic (p=0.0003) and nuclear (p=0.0001) localization of DP mRNA expression comparing DPB1*04:01 (rs9277534AA) and DPB1*05:01 (rs9277534GG) homozygous cells. The study of the correlation between differential DPB1 expression and long non-coding RNAs (lncRNAs) showed that lnc-HLA-DPB1-13:1 is strongly associated with DP expression (r=0.85), suggesting the potential involvement of lncRNA in regulating DP expression. The correlation of DP donor specific antibody (DSA) with B cell flow crossmatch (B-FCXM) results showed a better linear correlation of DP DSA against GG and AG donor cells (R2 = 0.4243, p=0.0025 and R2 = 0.6172, p=0.0003, respectively), compared to DSA against AA donor cells (R2 = 0.0649, p=0.4244). This explained why strong DP DSA with a low expression DP leads to negative B-FCXM. In conclusion, this study provides evidence supporting the involvement of lncRNA in modulating HLA-DP expression, shedding lights on the intricate regulatory mechanisms of DP, particularly under inflammatory conditions in transplantation.


Assuntos
RNA Longo não Codificante , Humanos , Hibridização in Situ Fluorescente , Cadeias beta de HLA-DP/genética , Genótipo , Anticorpos/genética , Doadores não Relacionados , RNA Mensageiro
4.
Vascul Pharmacol ; 146: 107090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908591

RESUMO

Chronic vascular inflammation underlies many diseases, including atherosclerosis, autoimmune vasculitides and transplant rejection. The resolution of inflammation is critical for proper healing and restoration of homeostasis, but the timing and signaling mechanisms involved in the return to a non-inflamed state are not well understood. Pro-adhesive gene expression, phenotype and secretome of human endothelial cells was measured in primary human aortic endothelium under chronic TNFα stimulation, and after short-term TNFα priming followed by withdrawal. The effects of NFκB, MAPK and JAK1/2 inhibitors on TNFα-induced gene expression were tested. The majority of inducible TNFα effectors, such as E-selectin, VCAM-1 and most chemokines, required continuous exposure for reinforcement of the altered phenotype, and were NFκB dependent. However, 3 h priming with TNFα induced late phase STAT activation and interferon response genes after 18 h, as well as enhanced ICAM-1, BST2 and CXCR3 ligand expression. Chronic activation was autonomous of continuous TNFα, and could be blocked by the JAK1/2 inhibitor ruxolitinib. The results demonstrate that NFκB is not a significant driver of the later phase of endothelial cell activation by TNFα, but that sustained inflammation is JAK1/2-dependent and characterized by adaptive chemokines.


Assuntos
Molécula 1 de Adesão Intercelular , Fator de Necrose Tumoral alfa , Selectina E/genética , Células Endoteliais/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Interferons , Ligantes , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética
5.
Front Immunol ; 12: 703457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305943

RESUMO

Background: Correlation between antibody-mediated rejection (ABMR) and circulating HLA donor-specific antibodies (HLA-DSA) is strong but imperfect in kidney transplant (KT) recipients, raising the possibility of undetected HLA-DSA or non-HLA antibodies contributing to ABMR. Detailed evaluation of the degree of HLA matching together with the identification of non-HLA antibodies in KT may help to decipher the antibody involved. Methods: We retrospectively assessed patients with transplant biopsies scored following Banff'15 classification. Pre- and post-transplant serum samples were checked for HLA and non-HLA antibodies [MICA-Ab, angiotensin-II type-1-receptor (AT1R)-Ab, endothelin-1 type-A-receptor (ETAR)-Ab and crossmatches with primary aortic endothelial cells (EC-XM)]. We also analyzed HLA epitope mismatches (HLA-EM) between donors and recipients to explore their role in ABMR histology (ABMRh) with and without HLA-DSA. Results: One-hundred eighteen patients with normal histology (n = 19), ABMRh (n = 52) or IFTA (n = 47) were studied. ABMRh patients were HLA-DSApos (n = 38, 73%) or HLA-DSAneg (n = 14, 27%). Pre-transplant HLA-DSA and AT1R-Ab were more frequent in ABMRh compared with IFTA and normal histology cases (p = 0.006 and 0.003), without differences in other non-HLA antibodies. Only three ABMRhDSAneg cases showed non-HLA antibodies. ABMRhDSAneg and ABMRhDSApos cases showed similar biopsy changes and graft-survival. Both total class II and DRB1 HLA-EM were associated with ABMRhDSApos but not with ABMRhDSAneg. Multivariate analysis showed that pre-transplant HLA-DSA (OR: 3.69 [1.31-10.37], p = 0.013) and AT1R-Ab (OR: 5.47 [1.78-16.76], p = 0.003) were independent predictors of ABMRhDSApos. Conclusions: In conclusion, pre-transplant AT1R-Ab is frequently found in ABMRhDSApos patients. However, AT1R-Ab, MICA-Ab, ETAR-Ab or EC-XM+ are rarely found among ABMRhDSAneg patients. Pre-transplant AT1R-Ab may act synergistically with preformed or de novo HLA-DSA to produce ABMRhDSApos but not ABMRhDSAneg. HLA epitope mismatch associates with ABMRhDSApos compared with ABMRhDSAneg, suggesting factors other than HLA are responsible for the damage.


Assuntos
Especificidade de Anticorpos , Epitopos/imunologia , Rejeição de Enxerto/imunologia , Antígenos HLA/imunologia , Isoanticorpos/imunologia , Transplante de Rim , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Front Immunol ; 12: 648946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936069

RESUMO

Background: Vascular endothelial cells (EC) are critical for regulation of local immune responses, through coordination of leukocyte recruitment from the blood and egress into the tissue. Growing evidence supports an additional role for endothelium in activation and costimulation of adaptive immune cells. However, this function remains somewhat controversial, and the full repertoire and durability of an enhanced endothelial costimulatory phenotype has not been wholly defined. Methods: Human endothelium was stimulated with continuous TNFα or IFNγ for 1-48hr; or primed with TNFα or IFNγ for only 3hr, before withdrawal of stimulus for up to 45hr. Gene expression of cytokines, costimulatory molecules and antigen presentation molecules was measured by Nanostring, and publicly available datasets of EC stimulation with TNFα or IFNγ were leveraged to further corroborate the results. Cell surface protein expression was detected by flow cytometry, and secretion of cytokines was assessed by Luminex and ELISA. Key findings were confirmed in primary human endothelial cells from 4-6 different vascular beds. Results: TNFα triggered mostly positive immune checkpoint molecule expression on endothelium, including CD40, 4-1BB, and ICOSLG but in the context of only HLA class I and immunoproteasome subunits. IFNγ promoted a more tolerogenic phenotype of high PD-L1 and PD-L2 expression with both HLA class I and class II molecules and antigen processing genes. Both cytokines elicited secretion of IL-15 and BAFF/BLyS, with TNFα stimulated EC additionally producing IL-6, TL1A and IL-1ß. Moreover, endothelium primed for a short period (3hr) with TNFα mostly failed to alter the costimulatory phenotype 24-48hr later, with only somewhat augmented expression of HLA class I. In contrast, brief exposure to IFNγ was sufficient to cause late expression of antigen presentation, cytokines and costimulatory molecules. In particular HLA class I, PD-1 ligand and cytokine expression was markedly high on endothelium two days after IFNγ was last present. Conclusions: Endothelia from multiple vascular beds possess a wide range of other immune checkpoint molecules and cytokines that can shape the adaptive immune response. Our results further demonstrate that IFNγ elicits prolonged signaling that persists days after initiation and is sufficient to trigger substantial gene expression changes and immune phenotype in vascular endothelium.


Assuntos
Células Endoteliais/imunologia , Endotélio Vascular/imunologia , Interferon gama/imunologia , Fator de Necrose Tumoral alfa/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Quimiocinas/metabolismo , Análise por Conglomerados , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Interferon gama/farmacologia , Fenótipo , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
7.
Hum Immunol ; 81(6): 293-299, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279925

RESUMO

MAIN PROBLEM: Luminex panel and single antigen beads (SAB) are used for screening and DSA specificity determination respectively. The cost of SAB may limit its general use, so some labs perform SAB tests only after positive screening. METHODS: We compared both strategies: 1) SAB only if positive screening with kits from manufacturer A, and 2) direct SAB from manufacturer B, and correlate their sensitivity with histological findings. RESULTS: We selected 118 kidney transplant recipients with a normal biopsy (n = 19), histological antibody-mediated damage (ABMR, n = 52) or interstitial fibrosis/tubular atrophy (IFTA, n = 47) following Banff 2015 and 2017 classification. Direct SAB detected DSA in 13 patients missed by screening. Strategy 1 detected DSA in 0% normal, 61.5% ABMR and 8.5% IFTA patients; percentages with strategy 2 were 5.2%, 78.8% and 14.8% (p=0.004). Strategy 2 identified DSA allowing full ABMR diagnosis in 17% cases missed by strategy 1. Thereafter, direct SAB from manufacturer A confirmed DSA in 46% DSA-positive cases with strategy 2 (55.5% ABMR cases). CONCLUSIONS: Luminex screening failed to identify clinically relevant HLA antibodies, hampering DSA detection in patients with possible ABMR. Direct SAB testing should be the chosen strategy for post-transplantation monitoring, albeit direct SAB from the two existing manufacturers may diverge in as much as 50% of cases.


Assuntos
Isoanticorpos/sangue , Transplante de Rim , Rim/patologia , Sorologia/métodos , Adulto , Idoso , Análise Custo-Benefício , Feminino , Fibrose , Antígenos HLA/imunologia , Teste de Histocompatibilidade , Humanos , Separação Imunomagnética , Masculino , Pessoa de Meia-Idade , Sorologia/economia
8.
Am J Transplant ; 20(10): 2686-2702, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32320528

RESUMO

HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury.


Assuntos
Células Endoteliais , Rejeição de Enxerto , Aloenxertos , Animais , Rejeição de Enxerto/etiologia , Antígenos HLA , Humanos , Inflamação/etiologia , Isoanticorpos , Macrófagos , Camundongos , Fenótipo , Doadores de Tecidos
10.
J Immunol ; 200(7): 2372-2390, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475988

RESUMO

Transplant recipients developing donor-specific HLA class II (HLA-II) Abs are at higher risk for Ab-mediated rejection (AMR) and transplant vasculopathy. To understand how HLA-II Abs cause AMR and transplant vasculopathy, we determined the signaling events triggered in vascular endothelial cells (EC) following Ab ligation of HLA-II molecules. HLA-II expression in EC was induced by adenoviral vector expression of CIITA or by pretreatment with TNF-α/IFN-γ. Ab ligation of class II stimulated EC proliferation and migration. Class II Ab also induced activation of key signaling nodes Src, focal adhesion kinase, PI3K, and ERK that regulated downstream targets of the mammalian target of rapamycin (mTOR) pathway Akt, p70 ribosomal S6 kinase, and S6 ribosomal protein. Pharmacological inhibitors and small interfering RNA showed the protein kinases Src, focal adhesion kinase, PI3K/Akt, and MEK/ERK regulate class II Ab-stimulated cell proliferation and migration. Treatment with rapalogs for 2 h did not affect HLA-II Ab-induced phosphorylation of ERK; instead, mTOR complex (mTORC)1 targets were dependent on activation of ERK. Importantly, suppression of mTORC2 for 24 h with rapamycin or everolimus or treatment with mTOR active-site inhibitors enhanced HLA-II Ab-stimulated phosphorylation of ERK. Furthermore, knockdown of Rictor with small interfering RNA caused overactivation of ERK while abolishing phosphorylation of Akt Ser473 induced by class II Ab. These data are different from HLA class I Ab-induced activation of ERK, which is mTORC2-dependent. Our results identify a complex signaling network triggered by HLA-II Ab in EC and indicate that combined ERK and mTORC2 inhibitors may be required to achieve optimal efficacy in controlling HLA-II Ab-mediated AMR.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/citologia , Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais/imunologia , Quinases da Família src/genética , Quinases da Família src/metabolismo
11.
J Heart Lung Transplant ; 34(4): 580-587, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25511749

RESUMO

BACKGROUND: Anti-MHC Class I alloantibodies have been implicated in the processes of acute and chronic rejection. These antibodies (Ab) bind to endothelial cells (EC) and transduce signals leading to the activation of cell survival and proliferation pathways, including Src, FAK and mTOR, as well as downstream targets ERK, S6 kinase (S6K) and S6 ribosomal protein (S6RP). We tested the hypothesis that phosphorylation of S6K, S6RP and ERK in capillary endothelium may serve as an adjunct diagnostic tool for antibody-mediated rejection (AMR) in heart allografts. METHODS: Diagnosis of AMR was based on histology or immunoperoxidase staining of paraffin-embedded tissue, consistent with 2013 ISHLT criteria. Diagnosis of acute cellular rejection (ACR) was based on ISHLT criteria. Endomyocardial biopsies from 67 heart transplant recipients diagnosed with acute rejection [33 with pAMR, 18 with ACR (15 with Grade 1R, 3 with Grade ≥2R), 16 with pAMR and ACR (13 with 1R and 3 with ≥2R)] and 40 age- and gender-matched recipients without rejection were tested for the presence of phosphorylated forms of ERK, S6RP and S6K by immunohistochemistry. RESULTS: Immunostaining of endomyocardial biopsies with evidence of pAMR showed a significant increase in expression of p-S6K and p-S6RP in capillary EC compared with controls. A weaker association was observed between pAMR and p-ERK. CONCLUSIONS: Biopsies diagnosed with pAMR often showed phosphorylation of S6K and S6RP, indicating that staining for p-S6K and p-S6RP is useful for the diagnosis of AMR. Our findings support a role for antibody-mediated HLA signaling in the process of graft injury.


Assuntos
Anticorpos/sangue , Rejeição de Enxerto/sangue , Rejeição de Enxerto/imunologia , Transplante de Coração , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteína S6 Ribossômica/metabolismo , Adulto , Biomarcadores/sangue , Feminino , Rejeição de Enxerto/diagnóstico , Humanos , Masculino , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA