Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765587

RESUMO

The increased demand for vascular grafts for the treatment of cardiovascular diseases has led to the search for novel biomaterials that can achieve the properties of the tissue. According to this, the investigation of polyurethanes has been a promising approach to overcome the present limitations. However, some biological properties remain to be overcome, such as thrombogenicity and hemocompatibility, among others. This paper aims to synthesize polyurethanes based on castor oil and castor oil transesterified with triethanolamine (TEA) and pentaerythritol (PE) and with the incorporation of 1% chitosan. Analysis of the wettability, enzymatic degradation, mechanical properties (tensile strength and elongation at break), and thermal stability was performed. Along with the evaluation of the cytotoxicity against mouse fibroblast (L929) and human dermal fibroblast (HDFa) cells, the hemolysis rate and platelet adhesion were determined. The castor-oil-based polyurethanes with and without 1% chitosan posed hydrophobic surfaces and water absorptions of less than 2% and enzymatic degradation below 0.5%. Also, they were thermally stable until 300 °C, with tensile strength like cardiovascular tissues. The synthesized castor oil/chitosan polyurethanes are non-cytotoxic (cell viabilities above 80%) to L929 and HDFa cells and non-thrombogenic and non-hemolytic (less than 2%); therefore, they are suitable for cardiovascular applications.

2.
J Funct Biomater ; 13(4)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36278653

RESUMO

The increasing morbidity and mortality of patients due to post-surgery complications of coronary artery bypass grafts (CABPG) are related to blood-material interactions. Thus, the characterization of the thrombogenicity of the biomaterial for cardiovascular devices is of particular interest. This research evaluated the anti-thrombogenic activity of polyurethanes-starch composites. We previously synthesized polyurethane matrices that were obtained from polycaprolactone diol (PCL), polyethylene glycol (PEG), pentaerythritol (PE), and isophorone diisocyanate (IPDI). In addition, potato starch (AL-N) and zwitterionic starch (AL-Z) were added as fillers. The anti-thrombogenic property was characterized by the clot formation time, platelet adhesion, protein absorption, TAT complex levels, and hemolysis. Additionally, we evaluated the cell viability of the endothelial and smooth muscle cells. Statically significant differences among the polyurethane matrices (P1, P2, and P3) were found for protein absorption and the blood clotting time without fillers. The polyurethanes composites with AL-Z presented an improvement in the anti-thrombogenic property. On the other hand, the composites with AL-Z reduced the viability of the endothelial cells and did not significantly affect the AoSCM (except for P1, which increased). These results classify these biomaterials as inert; therefore, they can be used for cardiovascular applications.

3.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634633

RESUMO

Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility.


Assuntos
Óleo de Rícino/química , Quitosana/química , Poliésteres/química , Poliuretanos/síntese química , Animais , Fenômenos Biomecânicos , Varredura Diferencial de Calorimetria , Linhagem Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Camundongos , Poliuretanos/química , Poliuretanos/farmacologia , Células THP-1/citologia , Células THP-1/efeitos dos fármacos , Termogravimetria
4.
J Biomater Appl ; 31(5): 708-720, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789793

RESUMO

In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues.


Assuntos
Materiais Biocompatíveis/síntese química , Óleo de Rícino/química , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Poliésteres/química , Poliuretanos/efeitos adversos , Poliuretanos/síntese química , Células 3T3 , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/efeitos adversos , Óleo de Rícino/efeitos adversos , Quitosana/efeitos adversos , Força Compressiva , Teste de Materiais , Camundongos , Poliésteres/efeitos adversos , Estresse Mecânico , Resistência à Tração
5.
J Biomater Sci Polym Ed ; 27(18): 1860-1879, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27654066

RESUMO

The objective of this study was to assess the effects of type of polyol and concentration of polycaprolactone (PCL) in polyurethanes (PUs) on microbial degradability, cytotoxicity, biological properties and antibacterial activity to establish whether these materials may have biomedical applications. Chemically modified and unmodified castor oil, PCL and isophorone diisocyanate in a 1:1 ratio of NCO/OH were used. PUs were characterized by stress/strain fracture tests and hardness (ASTM D 676-59). Hydrophilic character was determined by contact angle trials and morphology was evaluated by scanning electron microscopy. Degradability with Escherichia coli and Pseudomonas aeruginosa was evaluated by measuring variations in the weight of the polymers. Cytotoxicity was evaluated using the ISO 10993-5 (MTT) method with mouse embryonic fibroblasts L-929 (ATCC® CCL-1) in direct contact with the PUs and with NIH/3T3 cells (ATCC® CRL-1658) in indirect contact with the PUs. Antimicrobial activity against E. coli and P. aeruginosa was determined. PUs derived from castor oil modified (P0 and P1) have higher mechanical properties than PUs obtained from castor oil unmodified (CO). The viability of L-929 mouse fibroblasts in contact with polymers was greater than 70%. An assessment of NIH/3T3 cells in indirect contact with PUs revealed no-toxic degradation products. Finally, the antibacterial effect of the PUs decreased by 77% for E. coli and 56% for P. aeruginosa after 24 h. These results indicate that PUs synthesized with PCL have biocidal activity against Gram-negative bacteria and do not induce cytotoxic responses, indicating the potential use of these materials in the biomedical field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA