Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116821, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823278

RESUMO

Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.

3.
Neurosci Lett ; 760: 136003, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34098028

RESUMO

Mitochondria are cellular organelles essential for energy metabolism and antioxidant defense. Mitochondrial impairment is implicated in many psychiatric disorders, including depression, bipolar disorder, schizophrenia, and autism. To characterize and eventually find effective treatments of bioenergetic impairment in psychiatric disease, researchers find animal models indispensable. The present review focuses on brain energetics in several environmental, genetic, drug-induced, and surgery-induced animal models of depression, bipolar disorder, schizophrenia, and autism. Most reported deficits included decreased activity in the electron transport chain, increased oxidative damage, decreased antioxidant defense, decreased ATP levels, and decreased mitochondrial potential. Models of depression, bipolar disorder, schizophrenia, and autism shared many bioenergetic deficits. This is in concordance with the absence of a disease-specific brain energy phenotype in human patients. Unfortunately, due to the absence of null results in examined literature, indicative of reporting bias, we refrain from making generalized conclusions. Present review can be a valuable tool for comparing current findings, generating more targeted hypotheses, and selecting fitting models for further preclinical research.


Assuntos
Transtorno Autístico/fisiopatologia , Transtorno Bipolar/fisiopatologia , Encéfalo/metabolismo , Depressão/fisiopatologia , Metabolismo Energético/fisiologia , Esquizofrenia/fisiopatologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Transtorno Autístico/metabolismo , Transtorno Bipolar/metabolismo , Encéfalo/citologia , Encéfalo/fisiopatologia , Depressão/metabolismo , Modelos Animais de Doenças , Humanos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Esquizofrenia/metabolismo
4.
Fundam Clin Pharmacol ; 32(6): 589-602, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29863789

RESUMO

The adipokinetic and red pigment-concentrating hormone (AKH/RPCH) family of peptides controls fat, carbohydrate, and protein metabolism in insects. In our previous study, we showed that AKH possesses antidepressant, anxiolytic, and analgesic effects, causes hyperlocomotion, and exerts neuroprotective effects and increased brain neurotrophic factors in mice. The aim of this study was to investigate the effects of Anax imperator AKH (Ani-AKH), Libellula auripennis AKH (Lia-AKH), and Phormia-Terra hypertrehalosemic hormone (Pht-HrTH) on MK-801-induced memory deterioration in the active allothetic place avoidance test (AAPA) and MK-801-induced sensorimotor gating deficit in the prepulse inhibition test (PPI). In the AAPA task, Long-Evans rats were treated with Ani-AKH (2 mg/kg), Lia-AKH (2 mg/kg), Pht-HrTH (2 mg/kg), MK-801 (0.15 mg/kg), and the combination of MK-801 with the hormones subchronically. In the prepulse inhibition test, Wistar albino rats were treated with Ani-AKH (1 mg/kg), Lia-AKH (1 mg/kg), Pht-HrTH (1 mg/kg), MK-801 (0.1 mg/kg), or the combination of MK-801 with hormones acutely before the test. In our study, Ani-AKH (2 mg/kg), Lia-AKH (2 mg/kg), and Pht-HrTH (2 mg/kg) reversed MK-801 (0.15 mg/kg)-induced cognitive memory impairment effects in the AAPA task. Lia-AKH (1 mg/kg) significantly potentiated the MK-801-induced PPI disruption, while Ani-AKH (1 mg/kg) partially potentiated the impairment caused by MK-801, and Pht-HrTH did not modify the effect of MK-801. In conclusion, AKH had no effect in sensorimotor gating deficits in the PPI test in schizophrenia model while AKH improved memory in the schizophrenia model of MK-801.


Assuntos
Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Esquizofrenia/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Neuropeptídeos/farmacologia , Fármacos Neuroprotetores , Ácido Pirrolidonocarboxílico/farmacologia , Ratos , Ratos Long-Evans , Ratos Wistar , Esquizofrenia/induzido quimicamente
5.
Neurobiol Learn Mem ; 141: 93-100, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28359853

RESUMO

Adult neurogenesis in the dentate gyrus adds a substantial number of new functional neurons to the hippocampus network in rodents. To date, however, the function of these new granule cells remains unclear. We conducted an experiment to assess the contribution of adult neurogenesis in the dentate gyrus to acquisition and reversal learning in a task that predominantly requires generalization of a rule. Young adult male Long-Evans rats were repeatedly administered either a cytostatic temozolomide or saline for a period of four weeks (3 injections per week). Post treatment, animals were injected with bromodeoxyuridine to quantify adult neurogenesis in the dentate gyrus. For behavioral assessment we used hippocampus-dependent active place avoidance with reversal in a Carousel maze. Animals first learned to avoid a 60° sector on the rotating arena. Afterwards, sector was relocated to the opposite side of the rotating arena (reversal). The administration of temozolomide significantly improved the reversal performance compared to saline-treated rats. Our results suggest a significant, level-dependent, improvement of reversal learning in animals with reduced adult neurogenesis in hippocampus.


Assuntos
Dacarbazina/análogos & derivados , Giro Denteado/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Reversão de Aprendizagem/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Dacarbazina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Long-Evans , Temozolomida
6.
Steroids ; 117: 52-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27544449

RESUMO

Herein, we report a new class of amide-based inhibitors (1-4) of N-methyl-d-aspartate receptors (NMDARs) that were prepared as analogues of pregnanolone sulfate (PAS) and pregnanolone glutamate (PAG) - the steroidal neuroprotective NMDAR inhibitors. A series of experiments were conducted to evaluate their physicochemical and biological properties: (i) the inhibitory effect of compounds 3 and 4 on NMDARs was significantly improved (IC50=1.0 and 1.4µM, respectively) as compared with endogenous inhibitor - pregnanolone sulfate (IC50=24.6µM) and pregnanolone glutamate (IC50=51.7µM); (ii) physicochemical properties (logP and logD) were calculated; (iii) Caco-2 assay revealed that the permeability properties of compounds 2 and 4 are comparable with pregnanolone glutamate; (iv) compounds 1-4 have minimal or no adverse hepatic effect; (v) compounds 1-4 cross blood-brain-barrier.


Assuntos
Neurotransmissores/química , Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Amidas , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
7.
Front Behav Neurosci ; 8: 99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723864

RESUMO

Neither pain, nor depression exist as independent phenomena per se, they are highly subjective inner states, formed by our brain and built on the bases of our experiences, cognition and emotions. Chronic pain is associated with changes in brain physiology and anatomy. It has been suggested that the neuronal activity underlying subjective perception of chronic pain may be divergent from the activity associated with acute pain. We will discuss the possible common pathophysiological mechanism of chronic pain and depression with respect to the default mode network of the brain, neuroplasticity and the effect of antidepressants on these two pathological conditions. The default mode network of the brain has an important role in the representation of introspective mental activities and therefore can be considered as a nodal point, common for both chronic pain and depression. Neuroplasticity which involves molecular, cellular and synaptic processes modifying connectivity between neurons and neuronal circuits can also be affected by pathological states such as chronic pain or depression. We suppose that pathogenesis of depression and chronic pain shares common negative neuroplastic changes in the central nervous system (CNS). The positive impact of antidepressants would result in a reduction of these pathological cellular/molecular processes and in the amelioration of symptoms, but it may also increase survival times and quality of life of patients with chronic cancer pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA