Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Circ Cardiovasc Imaging ; 16(10): e014863, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847766

RESUMO

BACKGROUND: Severe aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and cardiac metabolic alterations with evidence of steatosis and impaired myocardial energetics. Despite this common phenotype, there is an unexplained and wide individual heterogeneity in the degree of hypertrophy and progression to myocardial fibrosis and heart failure. We sought to determine whether the cardiac metabolic state may underpin this variability. METHODS: We recruited 74 asymptomatic participants with AS and 13 healthy volunteers. Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to adenosine triphosphate ratio. Myocardial lipid content was determined using proton spectroscopy. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging. RESULTS: Phosphocreatine/adenosine triphosphate was reduced early and significantly across the LV wall thickness quartiles (Q2, 1.50 [1.21-1.71] versus Q1, 1.64 [1.53-1.94]) with a progressive decline with increasing disease severity (Q4, 1.48 [1.18-1.70]; P=0.02). Myocardial triglyceride content levels were overall higher in all the quartiles with a significant increase seen across the AV pressure gradient quartiles (Q2, 1.36 [0.86-1.98] versus Q1, 1.03 [0.81-1.56]; P=0.034). While all AS groups had evidence of subclinical LV dysfunction with impaired strain parameters, impaired systolic longitudinal strain was related to the degree of energetic impairment (r=0.219; P=0.03). Phosphocreatine/adenosine triphosphate was not only an independent predictor of LV wall thickness (r=-0.20; P=0.04) but also strongly associated with myocardial fibrosis (r=-0.24; P=0.03), suggesting that metabolic changes play a role in disease progression. The metabolic and functional parameters showed comparable results when graded by clinical severity of AS. CONCLUSIONS: A gradient of myocardial energetic deficit and steatosis exists across the spectrum of hypertrophied AS hearts, and these metabolic changes precede irreversible LV remodeling and subclinical dysfunction. As such, cardiac metabolism may play an important and potentially causal role in disease progression.


Assuntos
Estenose da Valva Aórtica , Cardiomiopatias , Humanos , Fosfocreatina/metabolismo , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/complicações , Trifosfato de Adenosina/metabolismo , Cardiomiopatias/complicações , Fibrose , Fenótipo , Progressão da Doença , Função Ventricular Esquerda
2.
Circulation ; 148(15): 1138-1153, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37746744

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is associated with an increased risk of left ventricular dysfunction after aortic valve replacement (AVR) in patients with severe aortic stenosis (AS). Persistent impairments in myocardial energetics and myocardial blood flow (MBF) may underpin this observation. Using phosphorus magnetic resonance spectroscopy and cardiovascular magnetic resonance, this study tested the hypothesis that patients with severe AS and T2D (AS-T2D) would have impaired myocardial energetics as reflected by the phosphocreatine to ATP ratio (PCr/ATP) and vasodilator stress MBF compared with patients with AS without T2D (AS-noT2D), and that these differences would persist after AVR. METHODS: Ninety-five patients with severe AS without coronary artery disease awaiting AVR (30 AS-T2D and 65 AS-noT2D) were recruited (mean, 71 years of age [95% CI, 69, 73]; 34 [37%] women). Thirty demographically matched healthy volunteers (HVs) and 30 patients with T2D without AS (T2D controls) were controls. One month before and 6 months after AVR, cardiac PCr/ATP, adenosine stress MBF, global longitudinal strain, NT-proBNP (N-terminal pro-B-type natriuretic peptide), and 6-minute walk distance were assessed in patients with AS. T2D controls underwent identical assessments at baseline and 6-month follow-up. HVs were assessed once and did not undergo 6-minute walk testing. RESULTS: Compared with HVs, patients with AS (AS-T2D and AS-noT2D combined) showed impairment in PCr/ATP (mean [95% CI]; HVs, 2.15 [1.89, 2.34]; AS, 1.66 [1.56, 1.75]; P<0.0001) and vasodilator stress MBF (HVs, 2.11 mL min g [1.89, 2.34]; AS, 1.54 mL min g [1.41, 1.66]; P<0.0001) before AVR. Before AVR, within the AS group, patients with AS-T2D had worse PCr/ATP (AS-noT2D, 1.74 [1.62, 1.86]; AS-T2D, 1.44 [1.32, 1.56]; P=0.002) and vasodilator stress MBF (AS-noT2D, 1.67 mL min g [1.5, 1.84]; AS-T2D, 1.25 mL min g [1.22, 1.38]; P=0.001) compared with patients with AS-noT2D. Before AVR, patients with AS-T2D also had worse PCr/ATP (AS-T2D, 1.44 [1.30, 1.60]; T2D controls, 1.66 [1.56, 1.75]; P=0.04) and vasodilator stress MBF (AS-T2D, 1.25 mL min g [1.10, 1.41]; T2D controls, 1.54 mL min g [1.41, 1.66]; P=0.001) compared with T2D controls at baseline. After AVR, PCr/ATP normalized in patients with AS-noT2D, whereas patients with AS-T2D showed no improvements (AS-noT2D, 2.11 [1.79, 2.43]; AS-T2D, 1.30 [1.07, 1.53]; P=0.0006). Vasodilator stress MBF improved in both AS groups after AVR, but this remained lower in patients with AS-T2D (AS-noT2D, 1.80 mL min g [1.59, 2.0]; AS-T2D, 1.48 mL min g [1.29, 1.66]; P=0.03). There were no longer differences in PCr/ATP (AS-T2D, 1.44 [1.30, 1.60]; T2D controls, 1.51 [1.34, 1.53]; P=0.12) or vasodilator stress MBF (AS-T2D, 1.48 mL min g [1.29, 1.66]; T2D controls, 1.60 mL min g [1.34, 1.86]; P=0.82) between patients with AS-T2D after AVR and T2D controls at follow-up. Whereas global longitudinal strain, 6-minute walk distance, and NT-proBNP all improved after AVR in patients with AS-noT2D, no improvement in these assessments was observed in patients with AS-T2D. CONCLUSIONS: Among patients with severe AS, those with T2D demonstrate persistent abnormalities in myocardial PCr/ATP, vasodilator stress MBF, and cardiac contractile function after AVR; AVR effectively normalizes myocardial PCr/ATP, vasodilator stress MBF, and cardiac contractile function in patients without T2D.


Assuntos
Estenose da Valva Aórtica , Diabetes Mellitus Tipo 2 , Implante de Prótese de Valva Cardíaca , Humanos , Feminino , Masculino , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Diabetes Mellitus Tipo 2/complicações , Função Ventricular Esquerda/fisiologia , Vasodilatadores , Trifosfato de Adenosina , Implante de Prótese de Valva Cardíaca/efeitos adversos
3.
Circulation ; 148(2): 109-123, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37199155

RESUMO

BACKGROUND: The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results. METHODS: To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.9±9.1) underwent separate infusions of insulin+glucose infusion (I+G) or Intralipid infusion. We used cardiovascular magnetic resonance to assess cardiac function and measured energetics using phosphorus-31 magnetic resonance spectroscopy. To investigate the effects of these infusions on cardiac substrate use, function, and myocardial oxygen uptake (MVo2), invasive arteriovenous sampling and pressure-volume loops were performed (n=9). RESULTS: At rest, we found that the heart had considerable metabolic flexibility. During I+G, cardiac glucose uptake and oxidation were predominant (70±14% total energy substrate for adenosine triphosphate production versus 17±16% for Intralipid; P=0.002); however, no change in cardiac function was seen relative to basal conditions. In contrast, during Intralipid infusion, cardiac long-chain fatty acid (LCFA) delivery, uptake, LCFA acylcarnitine production, and fatty acid oxidation were all increased (LCFA 73±17% of total substrate versus 19±26% total during I+G; P=0.009). Myocardial energetics were better with Intralipid compared with I+G (phosphocreatine/adenosine triphosphate 1.86±0.25 versus 2.01±0.33; P=0.02), and systolic and diastolic function were improved (LVEF 34.9±9.1 baseline, 33.7±8.2 I+G, 39.9±9.3 Intralipid; P<0.001). During increased cardiac workload, LCFA uptake and oxidation were again increased during both infusions. There was no evidence of systolic dysfunction or lactate efflux at 65% maximal heart rate, suggesting that a metabolic switch to fat did not cause clinically meaningful ischemic metabolism. CONCLUSIONS: Our findings show that even in nonischemic heart failure with reduced ejection fraction with severely impaired systolic function, significant cardiac metabolic flexibility is retained, including the ability to alter substrate use to match both arterial supply and changes in workload. Increasing LCFA uptake and oxidation is associated with improved myocardial energetics and contractility. Together, these findings challenge aspects of the rationale underlying existing metabolic therapies for heart failure and suggest that strategies promoting fatty acid oxidation may form the basis for future therapies.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Metabolismo Energético , Função Ventricular Esquerda , Miocárdio/metabolismo , Insuficiência Cardíaca/patologia , Trifosfato de Adenosina/metabolismo , Disfunção Ventricular Esquerda/patologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
4.
NMR Biomed ; : e4950, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046414

RESUMO

Even at 7 T, cardiac 31 P magnetic resonance spectroscopic imaging (MRSI) is fundamentally limited by low signal-to-noise ratio (SNR), leading to long scan times and poor temporal and spatial resolutions. Compartment-based reconstruction algorithms such as magnetic resonance spectroscopy with linear algebraic modeling (SLAM) and spectral localization by imaging (SLIM) may improve SNR or reduce scan time without changes to acquisition. Here, we compare the repeatability and SNR performance of these compartment-based methods, applied to three different acquisition schemes at 7 T. Twelve healthy volunteers were scanned twice. Each scan session consisted of a 6.5-min 3D acquisition-weighted (AW) cardiac 31 P phase encode-based MRSI acquisition and two 6.5-min truncated k-space acquisitions with increased averaging (4 × 4 × 4 central k-space phase encodes and fractional SLAM [fSLAM] optimized k-space phase encodes). Spectra were reconstructed using (i) AW Fourier reconstruction; (ii) AW SLAM; (iii) AW SLIM; (iv) 4 × 4 × 4 SLAM; (v) 4 × 4 × 4 SLIM; and (vi) fSLAM acquisition-reconstruction combinations. The phosphocreatine-to-adenosine triphosphate (PCr/ATP) ratio, the PCr SNR, and spatial response functions were computed, in addition to coefficients of reproducibility and variability. Using the compartment-based reconstruction algorithms with the AW 31 P acquisition resulted in a significant increase in SNR compared with previously published Fourier-based MRSI reconstruction methods while maintaining the measured PCr/ATP ratio and improving interscan reproducibility. The alternative acquisition strategies with truncated k-space performed no better than the common AW approach. Compartment-based spectroscopy approaches provide an attractive reconstruction method for cardiac 31 P spectroscopy at 7 T, improving reproducibility and SNR without the need for a dedicated k-space sampling strategy.

5.
Circulation ; 147(22): 1654-1669, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37070436

RESUMO

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness. METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated. RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment difference [empagliflozin - placebo], -0.25 [95% CI, -0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, -0.16 [95% CI, -0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF (adjusted mean treatment difference, -0.13 [95% CI, -0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, -0.22 [95% CI, -0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed. CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03332212.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Estudos Prospectivos , Dobutamina/farmacologia , Metabolismo Energético , Trifosfato de Adenosina
6.
NMR Biomed ; 36(1): e4813, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995750

RESUMO

A three-dimensional (3D), density-weighted, concentric rings trajectory (CRT) magnetic resonance spectroscopic imaging (MRSI) sequence is implemented for cardiac phosphorus (31 P)-MRS at 7 T. The point-by-point k-space sampling of traditional phase-encoded chemical shift imaging (CSI) sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high signal-to-noise ratio (SNR). We first characterise the SNR and point-spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7 T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatiotemporal data was also performed after acquisition. The proposed sequence measures 3D localised phosphocreatine to adenosine triphosphate (PCr/ATP) ratios of the human myocardium in 2.5 min, 2.6 times faster than the minimum scan time for acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time, a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7-T CRT 31 P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.


Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Espectroscopia de Ressonância Magnética
7.
JACC Cardiovasc Imaging ; 15(12): 2112-2126, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36481080

RESUMO

Pressure overload in aortic stenosis (AS) encompasses both structural and metabolic remodeling and increases the risk of decompensation into heart failure. A major component of metabolic derangement in AS is abnormal cardiac substrate use, with down-regulation of fatty acid oxidation, increased reliance on glucose metabolism, and subsequent myocardial lipid accumulation. These changes are associated with energetic and functional cardiac impairment in AS and can be assessed with the use of cardiac magnetic resonance spectroscopy (MRS). Proton MRS allows the assessment of myocardial triglyceride content and creatine concentration. Phosphorous MRS allows noninvasive in vivo quantification of the phosphocreatine-to-adenosine triphosphate ratio, a measure of cardiac energy status that is reduced in patients with severe AS. This review summarizes the changes to cardiac substrate and high-energy phosphorous metabolism and how they affect cardiac function in AS. The authors focus on the role of MRS to assess these metabolic changes, and potentially guide future (cellular) metabolic therapy in AS.


Assuntos
Estenose da Valva Aórtica , Humanos , Valor Preditivo dos Testes , Estenose da Valva Aórtica/diagnóstico por imagem , Imageamento por Ressonância Magnética
8.
Diabetes Care ; 45(12): 3007-3015, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099225

RESUMO

OBJECTIVE: We investigated if women with gestational diabetes mellitus (GDM) in the third trimester of pregnancy exhibit adverse cardiac alterations in myocardial energetics, function, or tissue characteristics. RESEARCH DESIGN AND METHODS: Thirty-eight healthy, pregnant women and 30 women with GDM were recruited. Participants underwent phosphorus MRS and cardiovascular magnetic resonance for assessment of myocardial energetics (phosphocreatine [PCr] to ATP ratio), tissue characteristics, biventricular volumes and ejection fractions, left ventricular (LV) mass, global longitudinal shortening (GLS), and mitral in-flow E-wave to A-wave ratio. RESULTS: Participants were matched for age, gestational age, and ethnicity. The following data are reported as mean ± SD. The women with GDM had higher BMI (27 ± 4 vs. 33 ± 5 kg/m2; P = 0.0001) and systolic (115 ± 11 vs. 121 ± 13 mmHg; P = 0.04) and diastolic (72 ± 7 vs. 76 ± 9 mmHg; P = 0.04) blood pressures. There was no difference in N-terminal pro-brain natriuretic peptide concentrations between the groups. The women with GDM had lower myocardial PCr to ATP ratio (2.2 ± 0.3 vs. 1.9 ± 0.4; P < 0.0001), accompanied by lower LV end-diastolic volumes (76 ± 12 vs. 67 ± 11 mL/m2; P = 0.002) and higher LV mass (90 ± 13 vs. 103 ± 18 g; P = 0.001). Although ventricular ejection fractions were similar, the GLS was reduced in women with GDM (-20% ± 3% vs. -18% ± 3%; P = 0.008). CONCLUSIONS: Despite no prior diagnosis of diabetes, women with obesity and GDM manifest impaired myocardial contractility and higher LV mass, associated with reductions in myocardial energetics in late pregnancy compared with lean women with healthy pregnancy. These findings may aid our understanding of the long-term cardiovascular risks associated with GDM.


Assuntos
Diabetes Gestacional , Feminino , Gravidez , Humanos , Obesidade/complicações , Terceiro Trimestre da Gravidez , Coração , Trifosfato de Adenosina
9.
PLoS One ; 17(6): e0269957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709167

RESUMO

Phosphorus magnetic resonance spectroscopy (31P-MRS) has previously demonstrated decreased energy reserves in the form of phosphocreatine to adenosine-tri-phosphate ratio (PCr/ATP) in the hearts of patients with type 2 diabetes (T2DM). Recent 31P-MRS techniques using 7T systems, e.g. long mixing time stimulated echo acquisition mode (STEAM), allow deeper insight into cardiac metabolism through assessment of inorganic phosphate (Pi) content and myocardial pH, which play pivotal roles in energy production in the heart. Therefore, we aimed to further explore the cardiac metabolic phenotype in T2DM using STEAM at 7T. Seventeen patients with T2DM and twenty-three healthy controls were recruited and their cardiac PCr/ATP, Pi/PCr and pH were assessed at 7T. Diastolic function of all patients with T2DM was assessed using echocardiography to investigate the relationship between diastolic dysfunction and cardiac metabolism. Mirroring the decreased PCr/ATP (1.70±0.31 vs. 2.07±0.39; p<0.01), the cardiac Pi/PCr was increased (0.13±0.07 vs. 0.10±0.03; p = 0.02) in T2DM patients in comparison to healthy controls. Myocardial pH was not significantly different between the groups (7.14±0.12 vs. 7.10±0.12; p = 0.31). There was a negative correlation between PCr/ATP and diastolic function (R2 = 0.33; p = 0.02) in T2DM. No correlation was observed between diastolic function and Pi/PCr and (R2 = 0.16; p = 0.21). In addition, we did not observe any correlation between cardiac PCr/ATP and Pi/PCr (p = 0.19). Using STEAM 31P-MRS at 7T we have for the first time explored Pi/PCr in the diabetic human heart and found it increased when compared to healthy controls. The lack of correlation between measured PCr/ATP and Pi/PCr suggests that independent mechanisms might contribute to these perturbations.


Assuntos
Diabetes Mellitus Tipo 2 , Fósforo , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/metabolismo , Fosfocreatina/metabolismo , Fósforo/metabolismo
11.
Front Physiol ; 13: 793987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173629

RESUMO

In this acute intervention study, we investigated the potential benefit of ketone supplementation in humans by studying cardiac phosphocreatine to adenosine-triphosphate ratios (PCr/ATP) and skeletal muscle PCr recovery using phosphorus magnetic resonance spectroscopy (31P-MRS) before and after ingestion of a ketone ester drink. We recruited 28 healthy individuals: 12 aged 23-70 years for cardiac 31P-MRS, and 16 aged 60-75 years for skeletal muscle 31P-MRS. Baseline and post-intervention resting cardiac and dynamic skeletal muscle 31P-MRS scans were performed in one visit, where 25 g of the ketone monoester, deltaG®, was administered after the baseline scan. Administration was timed so that post-intervention 31P-MRS would take place 30 min after deltaG® ingestion. The deltaG® ketone drink was well-tolerated by all participants. In participants who provided blood samples, post-intervention blood glucose, lactate and non-esterified fatty acid concentrations decreased significantly (-28.8%, p ≪ 0.001; -28.2%, p = 0.02; and -49.1%, p ≪ 0.001, respectively), while levels of the ketone body D-beta-hydroxybutyrate significantly increased from mean (standard deviation) 0.7 (0.3) to 4.0 (1.1) mmol/L after 30 min (p ≪ 0.001). There were no significant changes in cardiac PCr/ATP or skeletal muscle metabolic parameters between baseline and post-intervention. Acute ketone supplementation caused mild ketosis in blood, with drops in glucose, lactate, and free fatty acids; however, such changes were not associated with changes in 31P-MRS measures in the heart or in skeletal muscle. Future work may focus on the effect of longer-term ketone supplementation on tissue energetics in groups with compromised mitochondrial function.

12.
Circulation ; 144(21): 1664-1678, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34743560

RESUMO

BACKGROUND: Transient pulmonary congestion during exercise is emerging as an important determinant of reduced exercise capacity in heart failure with preserved ejection fraction (HFpEF). We sought to determine whether an abnormal cardiac energetic state underpins this process. METHODS: We recruited patients across the spectrum of diastolic dysfunction and HFpEF (controls, n=11; type 2 diabetes, n=9; HFpEF, n=14; and severe diastolic dysfunction attributable to cardiac amyloidosis, n=9). Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to ATP ratio. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging and echocardiography and lung water using magnetic resonance proton density mapping. Studies were performed at rest and during submaximal exercise using a magnetic resonance imaging ergometer. RESULTS: Paralleling the stepwise decline in diastolic function across the groups (E/e' ratio; P<0.001) was an increase in NT-proBNP (N-terminal pro-brain natriuretic peptide; P<0.001) and a reduction in phosphocreatine/ATP ratio (control, 2.15 [2.09, 2.29]; type 2 diabetes, 1.71 [1.61, 1.91]; HFpEF, 1.66 [1.44, 1.89]; cardiac amyloidosis, 1.30 [1.16, 1.53]; P<0.001). During 20-W exercise, lower left ventricular diastolic filling rates (r=0.58; P<0.001), lower left ventricular diastolic reserve (r=0.55; P<0.001), left atrial dilatation (r=-0.52; P<0.001), lower right ventricular contractile reserve (right ventricular ejection fraction change, r=0.57; P<0.001), and right atrial dilation (r=-0.71; P<0.001) were all linked to lower phosphocreatine/ATP ratio. Along with these changes, pulmonary proton density mapping revealed transient pulmonary congestion in patients with HFpEF (+4.4% [0.5, 6.4]; P=0.002) and cardiac amyloidosis (+6.4% [3.3, 10.0]; P=0.004), which was not seen in healthy controls (-0.1% [-1.9, 2.1]; P=0.89) or type 2 diabetes without HFpEF (+0.8% [-1.7, 1.9]; P=0.82). The development of exercise-induced pulmonary congestion was associated with lower phosphocreatine/ATP ratio (r=-0.43; P=0.004). CONCLUSIONS: A gradient of myocardial energetic deficit exists across the spectrum of HFpEF. Even at low workload, this energetic deficit is related to markedly abnormal exercise responses in all 4 cardiac chambers, which is associated with detectable pulmonary congestion. The findings support an energetic basis for transient pulmonary congestion in HFpEF.


Assuntos
Exercício Físico/efeitos adversos , Insuficiência Cardíaca Diastólica/diagnóstico , Insuficiência Cardíaca Diastólica/etiologia , Hiperemia/complicações , Hiperemia/fisiopatologia , Circulação Pulmonar , Idoso , Biomarcadores , Suscetibilidade a Doenças , Ecocardiografia , Teste de Esforço , Feminino , Testes de Função Cardíaca , Humanos , Hiperemia/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Edema Pulmonar/diagnóstico , Índice de Gravidade de Doença , Volume Sistólico , Função Ventricular Esquerda
13.
ESC Heart Fail ; 8(4): 2580-2590, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960149

RESUMO

AIMS: Despite substantial improvements over the last three decades, heart failure (HF) remains associated with a poor prognosis. The sodium-glucose co-transporter-2 inhibitor empagliflozin demonstrated significant reductions of HF hospitalization in patients with HF independent of the presence or absence of type 2 diabetes mellitus in the EMPEROR-Reduced trial and cardiovascular mortality in the EMPA-REG OUTCOME trial. To further elucidate the mechanisms behind these positive outcomes, this study aims to determine the effects of empagliflozin treatment on cardiac energy metabolism and physiology using magnetic resonance spectroscopy (MRS) and cardiovascular magnetic resonance (CMR). METHODS AND RESULTS: The EMPA-VISION trial is a double-blind, randomized, placebo-controlled, mechanistic study. A maximum of 86 patients with HF with reduced ejection fraction (n = 43, Cohort A) or preserved ejection fraction (n = 43, Cohort B), with or without type 2 diabetes mellitus, will be enrolled. Participants will be randomized 1:1 to receive either 10 mg of empagliflozin or placebo for 12 weeks. Eligible patients will undergo cardiovascular magnetic resonance, resting and dobutamine stress MRS, echocardiograms, cardiopulmonary exercise tests, serum metabolomics, and quality of life questionnaires at baseline and after 12 weeks. The primary endpoint will be the change in resting phosphocreatine-to-adenosine triphosphate ratio, as measured by 31 Phosphorus-MRS. CONCLUSIONS: EMPA-VISION is the first clinical trial assessing the effects of empagliflozin treatment on cardiac energy metabolism in human subjects in vivo. The results will shed light on the mechanistic action of empagliflozin in patients with HF and help to explain the results of the safety and efficacy outcome trials (EMPEROR-Reduced and EMPEROR-Preserved).


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Qualidade de Vida
14.
NMR Biomed ; 34(7): e4513, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826181

RESUMO

Cardiac proton spectroscopy (1 H-MRS) is widely used to quantify lipids. Other metabolites (e.g. creatine and choline) are clinically relevant but more challenging to quantify because of their low concentrations (approximately 10 mmol/L) and because of cardiac motion. To quantify cardiac creatine and choline, we added water-suppression cycling (WSC) to two single-voxel spectroscopy sequences (STEAM and PRESS). WSC introduces controlled residual water signals that alternate between positive and negative phases from transient to transient, enabling robust phase and frequency correction. Moreover, a particular weighted sum of transients eliminates residual water signals without baseline distortion. We compared WSC and the vendor's standard 'WET' water suppression in phantoms. Next, we tested repeatability in 10 volunteers (seven males, three females; age 29.3 ± 4.0 years; body mass index [BMI] 23.7 ± 4.1 kg/m2 ). Fat fraction, creatine concentration and choline concentration when quantified by STEAM-WET were 0.30% ± 0.11%, 29.6 ± 7.0 µmol/g and 7.9 ± 6.7 µmol/g, respectively; and when quantified by PRESS-WSC they were 0.30% ± 0.15%, 31.5 ± 3.1 µmol/g and 8.3 ± 4.4 µmol/g, respectively. Compared with STEAM-WET, PRESS-WSC gave spectra whose fitting quality expressed by Cramér-Rao lower bounds improved by 26% for creatine and 32% for choline. Repeatability of metabolite concentration measurements improved by 72% for creatine and 40% for choline. We also compared STEAM-WET and PRESS-WSC in 13 patients with severe symptomatic aortic or mitral stenosis indicated for valve replacement surgery (10 males, three females; age 75.9 ± 6.3 years; BMI 27.4 ± 4.3 kg/m2 ). Spectra were of analysable quality in eight patients for STEAM-WET, and in nine for PRESS-WSC. We observed comparable lipid concentrations with those in healthy volunteers, significantly reduced creatine concentrations, and a trend towards decreased choline concentrations. We conclude that PRESS-WSC offers improved performance and reproducibility for the quantification of cardiac lipids, creatine and choline concentrations in healthy volunteers at 3 T. It also offers improved performance compared with STEAM-WET for detecting altered creatine and choline concentrations in patients with valve disease.


Assuntos
Estenose da Valva Aórtica/diagnóstico por imagem , Colina/metabolismo , Creatina/metabolismo , Estenose da Valva Mitral/diagnóstico por imagem , Estenose da Valva Mitral/metabolismo , Miocárdio/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Água , Adulto , Idoso , Estenose da Valva Aórtica/metabolismo , Estudos de Coortes , Feminino , Voluntários Saudáveis , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Miocárdio/patologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
15.
Sci Rep ; 11(1): 9268, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927234

RESUMO

The heart's geometry and its metabolic activity vary over the cardiac cycle. The effect of these fluctuations on phosphorus (31P) magnetic resonance spectroscopy (MRS) data quality and metabolite ratios was investigated. 12 healthy volunteers were measured using a 7 T MR scanner and a cardiac 31P-1H loop coil. 31P chemical shift imaging data were acquired untriggered and at four different times during the cardiac cycle using acoustic triggering. Signals of adenosine-triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi) and 2,3-diphosphoglycerate (2,3-DPG) and their fit quality as Cramér-Rao lower bounds (CRLB) were quantified including corrections for contamination by 31P signals from blood, flip angle, saturation and total acquisition time. The myocardial filling factor was estimated from cine short axis views. The corrected signals of PCr and [Formula: see text]-ATP were higher during end-systole and lower during diastasis than in untriggered acquisitions ([Formula: see text]). Signal intensities of untriggered scans were between those with triggering to end-systole and diastasis. Fit quality of PCr and [Formula: see text]-ATP peaks was best during end-systole when blood contamination of ATP and Pi signals was lowest. While metabolite ratios and pH remained stable over the cardiac cycle, signal amplitudes correlated strongly with myocardial voxel filling. Triggering of cardiac 31P MRS acquisitions improves signal amplitudes and fit quality if the trigger delay is set to end-systole. We conclude that triggering to end-systole is superior to triggering to diastasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Coração/fisiologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/metabolismo , Fósforo/análise , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Magn Reson Med ; 85(6): 2978-2991, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33538063

RESUMO

PURPOSE: Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( Pi ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS: Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and Pi to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS: The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.


Assuntos
Trifosfato de Adenosina , Miocárdio , Animais , Creatina Quinase , Espectroscopia de Ressonância Magnética , Fosfocreatina , Ratos
17.
Magn Reson Med ; 85(3): 1147-1159, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929770

RESUMO

PURPOSE: Phosphorus spectroscopy (31 P-MRS) is a proven method to probe cardiac energetics. Studies typically report the phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. We focus on another 31 P signal: inorganic phosphate (Pi), whose chemical shift allows computation of myocardial pH, with Pi/PCr providing additional insight into cardiac energetics. Pi is often obscured by signals from blood 2,3-diphosphoglycerate (2,3-DPG). We introduce a method to quantify Pi in 14 min without hindrance from 2,3-DPG. METHODS: Using a 31 P stimulated echo acquisition mode (STEAM) sequence at 7 Tesla that inherently suppresses signal from 2,3-DPG, the Pi peak was cleanly resolved. Resting state UTE-chemical shift imaging (PCr/ATP) and STEAM 31 P-MRS (Pi/PCr, pH) were undertaken in 23 healthy controls; pH and Pi/PCr were subsequently recorded during dobutamine infusion. RESULTS: We achieved a clean Pi signal both at rest and stress with good 2,3-DPG suppression. Repeatability coefficient (8 subjects) for Pi/PCr was 0.036 and 0.12 for pH. We report myocardial Pi/PCr and pH at rest and during catecholamine stress in healthy controls. Pi/PCr was maintained during stress (0.098 ± 0.031 [rest] vs. 0.098 ± 0.031 [stress] P = .95); similarly, pH did not change (7.09 ± 0.07 [rest] vs. 7.08 ± 0.11 [stress] P = .81). Feasibility for patient studies was subsequently successfully demonstrated in a patient with cardiomyopathy. CONCLUSION: We introduced a method that can resolve Pi using 7 Tesla STEAM 31 P-MRS. We demonstrate the stability of Pi/PCr and myocardial pH in volunteers at rest and during catecholamine stress. This protocol is feasible in patients and potentially of use for studying pathological myocardial energetics.


Assuntos
Dobutamina , Miocárdio , Trifosfato de Adenosina , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Fosfatos , Fosfocreatina
18.
Cardiovasc Diagn Ther ; 10(3): 583-597, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32695639

RESUMO

The heart has a massive adenosine triphosphate (ATP) requirement, produced from the oxidation of metabolic substrates such as fat and glucose. Magnetic resonance spectroscopy offers a unique opportunity to probe this biochemistry: 31Phosphorus spectroscopy can demonstrate the production of ATP and quantify levels of the transport molecule phosphocreatine while 13Carbon spectroscopy can demonstrate the metabolic fates of glucose in real time. These techniques allow the metabolic deficits in heart failure to be interrogated and can be a potential future clinical tool.

19.
Front Physiol ; 11: 644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695010

RESUMO

Purpose: Aging is associated with changes in muscle energy metabolism. Proton (1H) and phosphorous (31P) magnetic resonance spectroscopy (MRS) has been successfully applied for non-invasive investigation of skeletal muscle metabolism. The aim of this study was to detect differences in adenosine triphosphate (ATP) production in the aging muscle by 31P-MRS and to identify potential changes associated with buffer capacity of muscle carnosine by 1H-MRS. Methods: Fifteen young and nineteen elderly volunteers were examined. 1H and 31P-MRS spectra were acquired at high field (7T). The investigation included carnosine quantification using 1H-MRS and resting and dynamic 31P-MRS, both including saturation transfer measurements of phosphocreatine (PCr), and inorganic phosphate (Pi)-to-ATP metabolic fluxes. Results: Elderly volunteers had higher time constant of PCr recovery (τ PCr ) in comparison to the young volunteers. Exercise was connected with significant decrease in PCr-to-ATP flux in both groups. Moreover, PCr-to-ATP flux was significantly higher in young compared to elderly both at rest and during exercise. Similarly, an increment of Pi-to-ATP flux with exercise was found in both groups but the intergroup difference was only observed during exercise. Elderly had lower muscle carnosine concentration and lower postexercise pH. A strong increase in phosphomonoester (PME) concentration was observed with exercise in elderly, and a faster Pi:PCr kinetics was found in young volunteers compared to elderly during the recovery period. Conclusion: Observations of a massive increment of PME concentration together with high Pi-to-ATP flux during exercise in seniors refer to decreased ability of the muscle to meet the metabolic requirements of exercise and thus a limited ability of seniors to effectively support the exercise load.

20.
J Cardiovasc Magn Reson ; 21(1): 19, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871562

RESUMO

BACKGROUND: Cardiovascular phosphorus MR spectroscopy (31P-CMRS) is a powerful tool for probing energetics in the human heart, through quantification of phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. In principle, 31P-CMRS can also measure cardiac intracellular pH (pHi) and the free energy of ATP hydrolysis (ΔGATP). However, these require determination of the inorganic phosphate (Pi) signal frequency and amplitude that are currently not robustly accessible because blood signals often obscure the Pi resonance. Typical cardiac 31P-CMRS protocols use low (e.g. 30°) flip-angles and short repetition time (TR) to maximise signal-to-noise ratio (SNR) within hardware limits. Unfortunately, this causes saturation of Pi with negligible saturation of the flowing blood pool. We aimed to show that an adiabatic 90° excitation, long-TR, 7T 31P-CMRS protocol will reverse this balance, allowing robust cardiac pHi measurements in healthy subjects and patients with hypertrophic cardiomyopathy (HCM). METHODS: The cardiac Pi T1 was first measured by the dual TR technique in seven healthy subjects. Next, ten healthy subjects and three HCM patients were scanned with 7T 31P-MRS using long (6 s) TR protocol and adiabatic excitation. Spectra were fitted for cardiac metabolites including Pi. RESULTS: The measured Pi T1 was 5.0 ± 0.3 s in myocardium and 6.4 ± 0.6 s in skeletal muscle. Myocardial pH was 7.12 ± 0.04 and Pi/PCr ratio was 0.11 ± 0.02. The coefficients of repeatability were 0.052 for pH and 0.027 for Pi/PCr quantification. The pH in HCM patients did not differ (p = 0.508) from volunteers. However, Pi/PCr was higher (0.24 ± 0.09 vs. 0.11 ± 0.02; p = 0.001); Pi/ATP was higher (0.44 ± 0.14 vs. 0.24 ± 0.05; p = 0.002); and PCr/ATP was lower (1.78 ± 0.07 vs. 2.10 ± 0.20; p = 0.020), in HCM patients, which is in agreement with previous reports. CONCLUSION: A 7T 31P-CMRS protocol with adiabatic 90° excitation and long (6 s) TR gives sufficient SNR for Pi and low enough blood signal to permit robust quantification of cardiac Pi and hence pHi. Pi was detectable in every subject scanned for this study, both in healthy subjects and HCM patients. Cardiac pHi was unchanged in HCM patients, but both Pi/PCr and Pi/ATP increased that indicate an energetic impairment in HCM. This work provides a robust technique to quantify cardiac Pi and pHi.


Assuntos
Trifosfato de Adenosina/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Metabolismo Energético , Espectroscopia de Ressonância Magnética , Miocárdio/metabolismo , Fosfatos/metabolismo , Fosfocreatina/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Masculino , Pessoa de Meia-Idade , Isótopos de Fósforo , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA