Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 12(1): 598, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863286

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) are low immunogenic and hold immunomodulatory properties that, along with their well-established multi-potency, might enhance their potential application in autoimmune and inflammatory diseases. The present study focused on the ability of DPSCs to modulate the inflammatory microenvironment through PD1/PD-L1 pathway. METHODS: Inflammatory microenvironment was created in vitro by the activation of T cells isolated from healthy donors and rheumatoid arthritis (RA) patients with anti-CD3 and anti-CD28 antibodies. Direct and indirect co-cultures between DPSCs and PBMCs were carried out to evaluate the activation of immunomodulatory checkpoints in DPSCs and the inflammatory pattern in PBMCs. RESULTS: Our data suggest that the inflammatory stimuli trigger DPSCs immunoregulatory functions that can be exerted by both direct and indirect contact. As demonstrated by using a selective PD-L1 inhibitor, DPSCs were able to activate compensatory pathways targeting to orchestrate the inflammatory process by modulating pro-inflammatory cytokines in pre-activated T lymphocytes. The involvement of PD-L1 mechanism was also observed in autologous inflammatory status (pulpitis) and after direct exposure to pre-activated T cells from RA patients suggesting that immunomodulatory/anti-inflammatory properties are strictly related to their stemness status. CONCLUSIONS: Our findings point out that the communication with the inflammatory microenvironment is essential in licensing their immunomodulatory properties.


Assuntos
Antígeno B7-H1 , Polpa Dentária , Imunomodulação , Células-Tronco Mesenquimais , Antígeno B7-H1/fisiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/imunologia , Humanos , Células-Tronco Mesenquimais/imunologia
2.
Neural Regen Res ; 15(3): 373-381, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31571644

RESUMO

The peripheral nerve injuries, representing some of the most common types of traumatic lesions affecting the nervous system, are highly invalidating for the patients besides being a huge social burden. Although peripheral nervous system owns a higher regenerative capacity than does central nervous system, mostly depending on Schwann cells intervention in injury repair, several factors determine the extent of functional outcome after healing. Based on the injury type, different therapeutic approaches have been investigated so far. Nerve grafting and Schwann cell transplantation have represented the gold standard treatment for peripheral nerve injuries, however these approaches own limitations, such as scarce donor nerve availability and donor site morbidity. Cell based therapies might provide a suitable tool for peripheral nerve regeneration, in fact, the ability of different stem cell types to differentiate towards Schwann cells in combination with the use of different scaffolds have been widely investigated in animal models of peripheral nerve injuries in the last decade. Dental pulp is a promising cell source for regenerative medicine, because of the ease of isolation procedures, stem cell proliferation and multipotency abilities, which are due to the embryological origin from neural crest. In this article we review the literature concerning the application of tooth derived stem cell populations combined with different conduits to peripheral nerve injuries animal models, highlighting their regenerative contribution exerted through either glial differentiation and neuroprotective/neurotrophic effects on the host tissue.

3.
Stem Cell Res ; 25: 166-178, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29154076

RESUMO

Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1ß) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Células-Tronco Mesenquimais , Neurônios Motores/citologia , Superóxido Dismutase-1/genética , Cordão Umbilical/transplante , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação Puntual , Superóxido Dismutase-1/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Cordão Umbilical/ultraestrutura
4.
Mediators Inflamm ; 2017: 2985051, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081600

RESUMO

Amyotrophic lateral sclerosis (ALS) is considered a multifactorial, multisystem disease in which inflammation and the immune system play important roles in development and progression. The pleiotropic cytokine TNFα is one of the major players governing the inflammation in the central nervous system and peripheral districts such as the neuromuscular and immune system. Changes in TNFα levels are reported in blood, cerebrospinal fluid, and nerve tissues of ALS patients and animal models. However, whether they play a detrimental or protective role on the disease progression is still not clear. Our group and others have recently reported opposite involvements of TNFR1 and TNFR2 in motor neuron death. TNFR2 mediates TNFα toxic effects on these neurons presumably through the activation of MAP kinase-related pathways. On the other hand, TNFR2 regulates the function and proliferation of regulatory T cells (Treg) whose expression is inversely correlated with the disease progression rate in ALS patients. In addition, TNFα is considered a procachectic factor with a direct catabolic effect on skeletal muscles, causing wasting. We review and discuss the role of TNFα in ALS in the light of its multisystem nature.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Linfócitos T Reguladores/imunologia
5.
J Neurochem ; 135(1): 109-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25940956

RESUMO

Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Neuroglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA