Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37397798

RESUMO

Mandelonitrile is a nitrogen-containing compound, considered an essential secondary metabolite. Chemically, it is a cyanohydrin derivative of benzaldehyde, with relevant functions in different physiological processes including defense against phytophagous arthropods. So far, procedures for detecting mandelonitrile have been effectively applied in cyanogenic plant species such as Prunus spp. Nevertheless, its presence in Arabidopsis thaliana , considered a non-cyanogenic species, has never been determined. Here, we report the development of an accurate protocol for mandelonitrile quantification in A. thaliana within the context of A. thaliana -spider mite interaction. First, mandelonitrile was isolated from Arabidopsis rosettes using methanol; then, it was derivatized by silylation to enhance detection and, finally, it was quantified using gas chromatography-mass spectrometry. The selectivity and sensitivity of this method make it possible to detect low levels of mandelonitrile (LOD 3 ppm) in a plant species considered non-cyanogenic that, therefore, will have little to no cyanogenic compounds, using a small quantity of starting material (≥100 mg).

2.
Food Chem ; 405(Pt A): 134789, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36347201

RESUMO

Glucose oxidase (GOX) and catalase (CAT) regulate the amount of H2O2 in honey, by generating or consuming it, so they are related to the antibacterial and antioxidant activity of honey. However, their activities are hardly analysed, since the process requires a previous dialysis that is non-selective, very time-consuming (>24 h), eco-unfriendly (>6L of buffer) and expensive. This research shows the design and performance of a material that selectively removes the actual interferents. The film-shaped-polymer is immersed for 90́ within a honey solution (12.5 mL of buffer), where it interacts exclusively with 1,2-dihydroxybenzenes, which we proved to be the real interferents (the material contains motifs derived from phenylboronic acid to interact with 1,2-diols). Polymeric chains favour condensation to occur exclusively with 1,2-dihydroxybenzenes, excluding monosaccharides. The interferents' removal using our designed polymer is selective, low cost (1.42€ per test), rapid and eco-friendly (saves 6L of buffer and 20.5 h of experimental workout per sample).


Assuntos
Mel , Mel/análise , Glucose Oxidase , Catalase/análise , Polifenóis/análise , Peróxido de Hidrogênio , Polímeros , Diálise Renal , Glucose
3.
Sci Rep ; 12(1): 8818, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614307

RESUMO

We have faced the preparation of fully water-soluble fluorescent peptide substrate with long-term environmental stability (in solution more than 35 weeks) and, accordingly, with stable results in the use of this probe in determining the activity of enzymes. We have achieved this goal by preparing a co-polymer of the commercial N-vinyl-2-pyrrolidone (99.5% mol) and a fluorescent substrate for trypsin activity determination having a vinylic group (0.5%). The activity of trypsin has been measured in water solutions of this polymer over time, contrasted against the activity of both the commercial substrate Z-L-Arg-7-amido-4-methylcoumarin hydrochloride and its monomeric derivative, prepared ad-hoc. Initially, the activity of the sensory polymer was 74.53 ± 1.72 nmol/min/mg of enzyme, while that of the commercial substrate was 20.44 ± 0.65 nmol/min/mg of enzyme, the former maintained stable along weeks and the latter with a deep decay to zero in three weeks. The 'protection' effect exerted by the polymer chain has been studied by solvation studies by UV-Vis spectroscopy, steady-state & time resolved fluorescence, thermogravimetry and isothermal titration calorimetry.


Assuntos
Corantes Fluorescentes , Peptídeos , Cinética , Polímeros , Especificidade por Substrato , Tripsina/metabolismo , Água
4.
Food Chem ; 342: 128300, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060001

RESUMO

We have developed a new method for the rapid (2 h) and inexpensive (materials cost < 0.02 €/sample) "2-in-1" determination of the total phenolic content (TPC) and the antioxidant activity (AOX) in honey samples. The method is based on hydrophilic colorimetric films with diazonium groups, which react with phenols rendering highly colored azo groups. The TPC of the sample is correlated to its trolox equivalent antioxidant capacity (TEAC). The intensity of the color allows us to determine both TPC and TEAC of the sample by the analysis of a picture taken with a smartphone that is analysed by the use of the color-definition-parameters (RGB). The controlled light conditions and the systematic use of the same camera avoid the periodical calibration of the system improving the efficiency of the method. Thus, it is a simple method carried out by non-specialized personnel and it involves much lower money and time investment compared to traditional methods.


Assuntos
Antioxidantes/análise , Técnicas de Química Analítica/instrumentação , Mel/análise , Fenóis/análise , Polímeros/química , Cor
5.
J Mater Chem B ; 6(22): 3735-3741, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254835

RESUMO

We have developed a new extremely hydrophilic polymeric film suitable for the detection and quantification of chloride in human sweat directly on the skin. The film, or membrane, has chemically anchored 6-methoxyquinoline groups as chloride responsive fluorescent motifs. We have prepared the sensory material from a standard vinyl copolymer, by a convenient and easy solid-phase reaction. The sensory material has a water swelling percentage of 700%, facilitating an immediate detection of chloride, is reusable for at least 6 cycles and can be handled without care by unskilled persons. The initially high fluorescence of the material decreases in the presence of chloride, allowing the quantification of chloride concentration by using the colour definition of a digital picture or a fluorimeter. The suitability of the material to perform quantitative chloride analysis of human sweat by putting it in contact with the skin offers promise for its application in the sweat test used for the diagnosis of cystic fibrosis (CF).

6.
ACS Appl Mater Interfaces ; 7(1): 921-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25475442

RESUMO

Selective and sensitive solid sensory substrates for detecting Al(III) in pure water are reported. The material is a flexible polymer film that can be handled and exhibits gel behavior and membrane performance. The film features a chemically anchored salicylaldehyde benzoylhydrazone derivative as an aluminum ion fluorescence sensor. A novel procedure for measuring Al(III) at the ppb level using a single solution drop in 20 min was developed. In this procedure, a drop was allowed to enter the hydrophilic material for 15 min before a 5 min drying period. The process forced the Al(III) to interact with the sensory motifs within the membrane before measuring the fluorescence of the system. The limit of detection of Al(III) was 22 ppm. Furthermore, a water-soluble sensory polymer containing the same sensory motifs was developed with a limit of detection of Al(III) of 1.5 ppb, which was significantly lower than the Environmental Protection Agency recommendations for drinking water.


Assuntos
Alumínio/química , Corantes Fluorescentes/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Cátions , Cromatografia , Radicais Livres , Temperatura Alta , Hidrazonas/química , Íons , Espectroscopia de Ressonância Magnética , Teste de Materiais , Membranas Artificiais , Sensibilidade e Especificidade , Solventes/química , Especificidade por Substrato , Água/química
7.
Sensors (Basel) ; 12(3): 2969-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22736987

RESUMO

The preparation of a fluorogenic sensory material for the detection of biomolecules is described. Strategic functionalisation and copolymerisation of a water insoluble organic sensory molecule with hydrophilic comonomers yielded a crosslinked, water-swellable, easy-to-manipulate solid system for water "dip-in" fluorogenic coenzyme A, cysteine, and glutathione detection by means of host-guest interactions. The sensory material was a membrane with gel-like behaviour, which exhibits a change in fluorescence behaviour upon swelling with a water solution of the target molecules. The membrane follows a "turn-on" pattern, which permits the titration of the abovementioned biomolecules. In this way, the water insoluble sensing motif can be exploited in aqueous media. The sensory motif within the membrane is a chemically anchored piperazinedione-derivative with a weakly bound Hg(II). The response is caused by the displacement of the cation from the membrane due to a stronger complexation with the biomolecules, thus releasing the fluorescent sensory moieties within the membrane.


Assuntos
Coenzima A/química , Cisteína/química , Corantes Fluorescentes/química , Glutationa/química , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Piperazinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA