Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 630(8015): 166-173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778114

RESUMO

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Assuntos
Transdiferenciação Celular , Hepatócitos , Hepatopatias , Fígado , Humanos , Sistema Biliar/citologia , Sistema Biliar/metabolismo , Sistema Biliar/patologia , Biópsia , Plasticidade Celular , Doença Crônica , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/patologia , Hepatócitos/metabolismo , Hepatócitos/citologia , Hepatócitos/patologia , Insulina/metabolismo , Fígado/patologia , Fígado/metabolismo , Fígado/citologia , Hepatopatias/patologia , Hepatopatias/metabolismo , Regeneração Hepática , Organoides/metabolismo , Organoides/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Serina-Treonina Quinases TOR/metabolismo
2.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
3.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Assuntos
Adipócitos , Diferenciação Celular , Oxigênio , Oxigênio/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Humanos , Técnicas de Cultura de Células/métodos , Animais , Glicólise , Hepatócitos/metabolismo , Hipóxia Celular , Mitocôndrias/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Cultivadas , Glucose/metabolismo , Macrófagos/metabolismo
4.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429078

RESUMO

Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/patologia , Matriz Extracelular/metabolismo , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas
5.
PLoS One ; 17(11): e0269122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413521

RESUMO

RB is a well-known cell cycle regulator controlling the G1 checkpoint. Previous reports have suggested that it can influence cell fate decisions not only by regulating cell proliferation and survival but also by interacting with transcription factors and epigenetic modifiers. However, the functional redundancy of RB family proteins (RB, RBL1 and RBL2) renders it difficult to investigate their roles during early development, especially in human. Here, we address this problem by generating human embryonic stem cells lacking RB family proteins. To achieve this goal, we first introduced frameshift mutations in RBL1 and RBL2 genes using the CRISPR/Cas9 technology, and then integrated the shRNA-expression cassette to knockdown RB upon tetracycline treatment. The resulting RBL1/2_dKO+RB_iKD cells remain pluripotent and efficiently differentiate into the primary germ layers in vitro even in the absence of the RB family proteins. In contrast, we observed that subsequent differentiation into foregut endoderm was impaired without the expression of RB, RBL1 and RBL2. Thus, it is suggested that RB proteins are dispensable for the maintenance and acquisition of cell identities during early development, but they are essential to generate advanced derivatives after the formation of primary germ layers. These results also indicate that our RBL1/2_dKO+RB_iKD cell lines are useful to depict the detailed molecular roles of RB family proteins in the maintenance and generation of various cell types accessible from human pluripotent stem cells.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular/fisiologia , Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteína do Retinoblastoma/genética , Proteína p130 Retinoblastoma-Like/genética
6.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251998

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Assuntos
Microglia , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Macrófagos , Neurônios
7.
Cell Stem Cell ; 29(5): 776-794.e13, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523140

RESUMO

Human cholangiocyte organoids show great promise for regenerative therapies and in vitro modeling of bile duct development and diseases. However, the cystic organoids lack the branching morphology of intrahepatic bile ducts (IHBDs). Here, we report establishing human branching cholangiocyte organoid (BRCO) cultures. BRCOs self-organize into complex tubular structures resembling the IHBD architecture. Single-cell transcriptomics and functional analysis showed high similarity to primary cholangiocytes, and importantly, the branching growth mimics aspects of tubular development and is dependent on JAG1/NOTCH2 signaling. When applied to cholangiocarcinoma tumor organoids, the morphology changes to an in vitro morphology like primary tumors. Moreover, these branching cholangiocarcinoma organoids (BRCCAOs) better match the transcriptomic profile of primary tumors and showed increased chemoresistance to gemcitabine and cisplatin. In conclusion, BRCOs recapitulate a complex process of branching morphogenesis in vitro. This provides an improved model to study tubular formation, bile duct functionality, and associated biliary diseases.


Assuntos
Colangiocarcinoma , Organoides , Ductos Biliares , Células Epiteliais , Humanos , Transcriptoma
8.
Cell Stem Cell ; 28(5): 816-832, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961769

RESUMO

Hepatic, pancreatic, and biliary (HPB) organoids are powerful tools for studying development, disease, and regeneration. As organoid research expands, the need for clear definitions and nomenclature describing these systems also grows. To facilitate scientific communication and consistent interpretation, we revisit the concept of an organoid and introduce an intuitive classification system and nomenclature for describing these 3D structures through the consensus of experts in the field. To promote the standardization and validation of HPB organoids, we propose guidelines for establishing, characterizing, and benchmarking future systems. Finally, we address some of the major challenges to the clinical application of organoids.


Assuntos
Fígado , Organoides , Consenso , Pâncreas
9.
Science ; 371(6531): 839-846, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602855

RESUMO

Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.


Assuntos
Doenças dos Ductos Biliares/terapia , Ductos Biliares Intra-Hepáticos/fisiologia , Ductos Biliares/citologia , Terapia Baseada em Transplante de Células e Tecidos , Células Epiteliais/citologia , Organoides/transplante , Animais , Bile , Ductos Biliares/fisiologia , Ductos Biliares Intra-Hepáticos/citologia , Ducto Colédoco/citologia , Células Epiteliais/fisiologia , Vesícula Biliar/citologia , Regulação da Expressão Gênica , Humanos , Fígado/fisiologia , Transplante de Fígado , Transplante de Células-Tronco Mesenquimais , Camundongos , Organoides/fisiologia , RNA-Seq , Obtenção de Tecidos e Órgãos , Transcriptoma
10.
Hepatology ; 73(1): 247-267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32222998

RESUMO

BACKGROUND AND AIMS: Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs). These organoids share many characteristics, including expression of cholangiocyte markers such as keratin (KRT) 19. However, the relationship between these organoids and their tissues of origin, and to each other, is largely unknown. APPROACH AND RESULTS: Organoids were derived from human gallbladder, common bile duct, pancreatic duct, and IHBDs using culture conditions promoting WNT signaling. The resulting IHBD and EHBD organoids expressed stem/progenitor markers leucine-rich repeat-containing G-protein-coupled receptor 5/prominin 1 and ductal markers KRT19/KRT7. However, RNA sequencing revealed that organoids conserve only a limited number of regional-specific markers corresponding to their location of origin. Of particular interest, down-regulation of biliary markers and up-regulation of cell-cycle genes were observed in organoids. IHBD and EHBD organoids diverged in their response to WNT signaling, and only IHBDs were able to express a low level of hepatocyte markers under differentiation conditions. CONCLUSIONS: Taken together, our results demonstrate that differences exist not only between extrahepatic biliary organoids and their tissue of origin, but also between IHBD and EHBD organoids. This information may help to understand the tissue specificity of cholangiopathies and also to identify targets for therapeutic development.


Assuntos
Ductos Biliares Extra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/citologia , Células Epiteliais/citologia , Organoides/fisiologia , Animais , Bile , Ductos Biliares Extra-Hepáticos/fisiologia , Ductos Biliares Intra-Hepáticos/fisiologia , Diferenciação Celular , Ducto Colédoco/citologia , Células Epiteliais/fisiologia , Vesícula Biliar/citologia , Regulação da Expressão Gênica , Humanos , Queratina-19/análise , Fígado/fisiologia , Camundongos , RNA-Seq , Obtenção de Tecidos e Órgãos
11.
Dev Cell ; 55(6): 771-783.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33290721

RESUMO

Human gut development requires the orchestrated interaction of differentiating cell types. Here, we generate an in-depth single-cell map of the developing human intestine at 6-10 weeks post-conception. Our analysis reveals the transcriptional profile of cycling epithelial precursor cells; distinct from LGR5-expressing cells. We propose that these cells may contribute to differentiated cell subsets via the generation of LGR5-expressing stem cells and receive signals from surrounding mesenchymal cells. Furthermore, we draw parallels between the transcriptomes of ex vivo tissues and in vitro fetal organoids, revealing the maturation of organoid cultures in a dish. Lastly, we compare scRNA-seq profiles from pediatric Crohn's disease epithelium alongside matched healthy controls to reveal disease-associated changes in the epithelial composition. Contrasting these with the fetal profiles reveals the re-activation of fetal transcription factors in Crohn's disease. Our study provides a resource available at www.gutcellatlas.org, and underscores the importance of unraveling fetal development in understanding disease.


Assuntos
Doença de Crohn/genética , Mucosa Intestinal/metabolismo , Transcriptoma , Adolescente , Células Cultivadas , Criança , Doença de Crohn/metabolismo , Humanos , Mucosa Intestinal/embriologia , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Stem Cell Reports ; 15(4): 827-835, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32888504

RESUMO

The ability of human induced pluripotent stem cells (hiPSCs) to differentiate in vitro to each of the three germ layer lineages has made them an important model of early human development and a tool for tissue engineering. However, the factors that disturb the intricate transcriptional choreography of differentiation remain incompletely understood. Here, we uncover a critical time window during which DNA damage significantly reduces the efficiency and fidelity with which hiPSCs differentiate to definitive endoderm. DNA damage prevents the normal reduction of p53 levels as cells pass through the epithelial-to-mesenchymal transition, diverting the transcriptional program toward mesoderm without induction of an apoptotic response. In contrast, TP53-deficient cells differentiate to endoderm with high efficiency after DNA damage, suggesting that p53 enforces a "differentiation checkpoint" in early endoderm differentiation that alters cell fate in response to DNA damage.


Assuntos
Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Dano ao DNA , Células-Tronco Pluripotentes Induzidas/citologia , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Dano ao DNA/genética , Endoderma/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesoderma/citologia , Transcrição Gênica
13.
Genome Biol ; 21(1): 157, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611441

RESUMO

BACKGROUND: Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. RESULTS: In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. CONCLUSION: We propose a direct link between the molecular machineries that control cell cycle progression and EHT.


Assuntos
Ciclo Celular , Diferenciação Celular , Células Endoteliais/fisiologia , Células-Tronco Hematopoéticas/citologia , Quinases Ciclina-Dependentes/metabolismo , Hematopoese , Humanos , Células-Tronco Pluripotentes , Análise de Célula Única
14.
Xenotransplantation ; 27(1): e12544, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31342573

RESUMO

Pluripotent stem cells have been investigated as a renewable source of therapeutic hepatic cells, in order to overcome the lack of transplantable donor hepatocytes. Whereas different studies were able to correct hepatic defects in animal models, they focused on the most mature phenotype of hepatocyte-like cells (HLCs) derived from pluripotent stem cells and needed freshly prepared cells, which limits clinical applications of HLCs. Here, we report the production of hepatic stem cells (pHSCs) from human-induced pluripotent stem cells (hiPSCs) in xeno-free, feeder-free, and chemically defined conditions using as extracellular matrix a recombinant laminin instead of Matrigel, an undefined animal-derived matrix. Freshly prepared and frozen pHSCs were transplanted via splenic injection in Gunn rats, the animal model for Crigler-Najjar syndrome. Following cell transplantation and daily immunosuppression treatment, bilirubinemia was significantly decreased (around 30% decrease, P < .05) and remained stable throughout the 6-month study. The transplanted pHSCs underwent maturation in vivo to restore the deficient metabolic hepatic function (bilirubin glucuronidation by UGT1A1). In conclusion, we demonstrate for the first time the differentiation of hiPSCs into pHSCs that (a) are produced using a differentiation protocol compatible with Good Manufacturing Practices, (b) can be frozen, and (c) are sufficient to demonstrate in vivo therapeutic efficacy to significantly lower hyperbilirubinemia in a model of inherited liver disease, despite their immature phenotype. Thus, our approach provides major advances toward future clinical applications and would facilitate cell therapy manufacturing from human pluripotent stem cells.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Síndrome de Crigler-Najjar/terapia , Hepatócitos/fisiologia , Hiperbilirrubinemia/terapia , Células-Tronco Pluripotentes Induzidas/fisiologia , Fígado/fisiologia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Células Cultivadas , Criopreservação , Modelos Animais de Doenças , Humanos , Fígado/cirurgia , Ratos , Ratos Gunn , Medicina Regenerativa/métodos , Transplante Heterólogo
15.
J Biol Chem ; 294(47): 17903-17914, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515269

RESUMO

The mesoderm is one of the three germ layers produced during gastrulation from which muscle, bones, kidneys, and the cardiovascular system originate. Understanding the mechanisms that control mesoderm specification could inform many applications, including the development of regenerative medicine therapies to manage diseases affecting these tissues. Here, we used human pluripotent stem cells to investigate the role of cell cycle in mesoderm formation. To this end, using small molecules or conditional gene knockdown, we inhibited proteins controlling G1 and G2/M cell cycle phases during the differentiation of human pluripotent stem cells into lateral plate, cardiac, and presomitic mesoderm. These loss-of-function experiments revealed that regulators of the G1 phase, such as cyclin-dependent kinases and pRb (retinoblastoma protein), are necessary for efficient mesoderm formation in a context-dependent manner. Further investigations disclosed that inhibition of the G2/M regulator cyclin-dependent kinase 1 decreases BMP (bone morphogenetic protein) signaling activity specifically during lateral plate mesoderm formation while reducing fibroblast growth factor/extracellular signaling-regulated kinase 1/2 activity in all mesoderm subtypes. Taken together, our findings reveal that cell cycle regulators direct mesoderm formation by controlling the activity of key developmental pathways.


Assuntos
Ciclo Celular , Diferenciação Celular , Quinases Ciclina-Dependentes/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Mesoderma/citologia , Linhagem da Célula , Quinases Ciclina-Dependentes/antagonistas & inibidores , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Mesoderma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Nat Protoc ; 14(6): 1884-1925, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110298

RESUMO

Pediatric liver transplantation is often required as a consequence of biliary disorders because of the lack of alternative treatments for repairing or replacing damaged bile ducts. To address the lack of availability of pediatric livers suitable for transplantation, we developed a protocol for generating bioengineered biliary tissue suitable for biliary reconstruction. Our platform allows the derivation of cholangiocyte organoids (COs) expressing key biliary markers and retaining functions of primary extra- or intrahepatic duct cholangiocytes within 2 weeks of isolation. COs are subsequently seeded on polyglycolic acid (PGA) scaffolds or densified collagen constructs for 4 weeks to generate bioengineered tissue retaining biliary characteristics. Expertise in organoid culture and tissue engineering is desirable for optimal results. COs correspond to mature functional cholangiocytes, differentiating our method from alternative organoid systems currently available that propagate adult stem cells. Consequently, COs provide a unique platform for studies in biliary physiology and pathophysiology, and the resulting bioengineered tissue has broad applications for regenerative medicine and cholangiopathies.


Assuntos
Ductos Biliares/citologia , Ductos Biliares/fisiologia , Organoides/citologia , Organoides/fisiologia , Regeneração , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Separação Celular/métodos , Células Cultivadas , Desenho de Equipamento , Humanos , Camundongos , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
17.
Methods Mol Biol ; 1981: 373-382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016668

RESUMO

Cholangiocytes play a crucial role in the pathophysiology of cholestasis. However, research on human cholangiocytes has been restricted by challenges in long-term propagation and large-scale expansion of primary biliary epithelium. The advent of organoid technology has overcome this limitation allowing long-term culture of a variety of epithelia from multiple organs. Here, we describe two methods for growing human cholangiocytes in organoid format. The first applies to the generation of intrahepatic bile ducts using human induced pluripotent stem cells using a protocol of differentiation that recapitulates physiological bile duct development. The second method allows the propagation of primary biliary epithelium from the extrahepatic ducts or gallbladder. Both protocols result in large numbers of cholangiocyte organoids expressing biliary markers and maintaining key cholangiocyte functions.


Assuntos
Colestase/metabolismo , Colestase/patologia , Organoides/patologia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Vesícula Biliar/metabolismo , Vesícula Biliar/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Fígado/patologia , Organoides/metabolismo
18.
Sci Rep ; 9(1): 3270, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824743

RESUMO

Numerous in vitro models endeavour to mimic the characteristics of primary human hepatocytes for applications in regenerative medicine and pharmaceutical science. Mature hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSCs) are one such in vitro model. Due to insufficiencies in transcriptome to proteome correlation, characterising the proteome of HLCs is essential to provide a suitable framework for their continual optimization. Here we interrogated the proteome during stepwise differentiation of hiPSCs into HLCs over 40 days. Whole cell protein lysates were collected and analysed using stabled isotope labelled mass spectrometry based proteomics. Quantitative proteomics identified over 6,000 proteins in duplicate multiplexed labelling experiments across two different time course series. Inductive cues in differentiation promoted sequential acquisition of hepatocyte specific markers. Analysis of proteins classically assigned as hepatic markers demonstrated trends towards maximum relative abundance between differentiation day 30 and 32. Characterisation of abundant proteins in whole cells provided evidence of the time dependent transition towards proteins corresponding with the functional repertoire of the liver. This data highlights how far the proteome of undifferentiated precursors have progressed to acquire a hepatic phenotype and constructs a platform for optimisation and improved maturation of HLC differentiation.


Assuntos
Antígenos de Diferenciação/metabolismo , Diferenciação Celular , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos de Diferenciação/genética , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteômica
20.
Gut ; 68(1): 49-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141958

RESUMO

OBJECTIVE: Human intestinal epithelial organoids (IEOs) are increasingly being recognised as a highly promising translational research tool. However, our understanding of their epigenetic molecular characteristics and behaviour in culture remains limited. DESIGN: We performed genome-wide DNA methylation and transcriptomic profiling of human IEOs derived from paediatric/adult and fetal small and large bowel as well as matching purified human gut epithelium. Furthermore, organoids were subjected to in vitro differentiation and genome editing using CRISPR/Cas9 technology. RESULTS: We discovered stable epigenetic signatures which define regional differences in gut epithelial function, including induction of segment-specific genes during cellular differentiation. Established DNA methylation profiles were independent of cellular environment since organoids retained their regional DNA methylation over prolonged culture periods. In contrast to paediatric and adult organoids, fetal gut-derived organoids showed distinct dynamic changes of DNA methylation and gene expression in culture, indicative of an in vitro maturation. By applying CRISPR/Cas9 genome editing to fetal organoids, we demonstrate that this process is partly regulated by TET1, an enzyme involved in the DNA demethylation process. Lastly, generating IEOs from a child diagnosed with gastric heterotopia revealed persistent and distinct disease-associated DNA methylation differences, highlighting the use of organoids as disease-specific research models. CONCLUSIONS: Our study demonstrates striking similarities of epigenetic signatures in mucosa-derived IEOs with matching primary epithelium. Moreover, these results suggest that intestinal stem cell-intrinsic DNA methylation patterns establish and maintain regional gut specification and are involved in early epithelial development and disease.


Assuntos
Metilação de DNA , Epigênese Genética , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Transcriptoma , Diferenciação Celular , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA