Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 15(6): 829-831, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29671387

RESUMO

The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.


Assuntos
DNA de Neoplasias , Epigênese Genética , Epigenômica/normas , Perfilação da Expressão Gênica/normas , Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA Neoplásico , Transcriptoma , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Europa (Continente) , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
2.
Br J Pharmacol ; 136(2): 183-92, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12010766

RESUMO

1. We have investigated the effect of diltiazem and its newly synthesized derivative (+,-)-trans-3-acetoxy-8-chloro-2,3-dihydro-5[2-diisopropylamine)ethyl]-2-(4-methoxyphenyl)-1,5-benzothiazepin-4-(5H)-ona hydrochloride (JAC-65) on several recombinant human neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. 2. At 3 microM, both drugs have little effect on the maximal currents evoked by brief pulses of acetylcholine (ACh) in five subtypes of nAChRs (alpha7, alpha3beta2, alpha4beta2, alpha3beta4, and alpha4beta4), showing little selectivity among subtypes. 3. However, both drugs accelerate the decay of the ionic currents evoked upon continuous stimulation of ACh, being this effect larger with JAC-65, and in beta4*-nAChRs. Such an effect was dependent on the concentrations of both the drug and of the agonist used, and showed the characteristics of a non-competitive antagonism. 4. We have further investigated the effect of both drugs when combined with submicromolar concentrations of nicotine, such as those present in plasma of cigarette smokers, and found that JAC-65, but not diltiazem, is able to greatly enhance the desensitizing effect of these low concentrations of nicotine, specially in beta4*-nAChRs. 5. Experiments in alpha4beta4-nAChRs failed to show voltage dependence of the action of JAC-65. Moreover, recovery from desensitization followed the same time course regardless of the presence of the drug, suggesting that the main mechanism of action of JAC-65 does not involve open channel block. 6. In summary, both drugs, diltiazem and JAC-65, seem to act through a non-competitive mechanism, accelerating the decay of the ionic currents, being JAC-65 more effective than diltiazem at the concentrations used in beta4*-nAChRs. Thus, the differences between both benzothiazepines when measuring various parameters suggest that their mechanisms of action could be slightly different. This would require further investigation.


Assuntos
Diltiazem/análogos & derivados , Diltiazem/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Receptores Nicotínicos/biossíntese , Animais , Relação Dose-Resposta a Droga , Feminino , Vetores Genéticos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas Recombinantes/biossíntese , Transfecção , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA