Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890067

RESUMO

A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55's involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure-activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.

2.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551034

RESUMO

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Animais , Sobrevivência Celular , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Camundongos , Ratos , Proteínas Repressoras , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo
3.
J Med Chem ; 65(10): 7118-7140, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35522977

RESUMO

Monoacylglycerol lipase (MAGL) is the enzyme responsible for the metabolism of 2-arachidonoylglycerol in the brain and the hydrolysis of peripheral monoacylglycerols. Many studies demonstrated beneficial effects deriving from MAGL inhibition for neurodegenerative diseases, inflammatory pathologies, and cancer. MAGL expression is increased in invasive tumors, furnishing free fatty acids as pro-tumorigenic signals and for tumor cell growth. Here, a new class of benzylpiperidine-based MAGL inhibitors was synthesized, leading to the identification of 13, which showed potent reversible and selective MAGL inhibition. Associated with MAGL overexpression and the prognostic role in pancreatic cancer, derivative 13 showed antiproliferative activity and apoptosis induction, as well as the ability to reduce cell migration in primary pancreatic cancer cultures, and displayed a synergistic interaction with the chemotherapeutic drug gemcitabine. These results suggest that the class of benzylpiperidine-based MAGL inhibitors have potential as a new class of therapeutic agents and MAGL could play a role in pancreatic cancer.


Assuntos
Monoacilglicerol Lipases , Neoplasias Pancreáticas , Proliferação de Células , Inibidores Enzimáticos/metabolismo , Humanos , Monoglicerídeos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico
4.
Biomedicines ; 10(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327462

RESUMO

Si306, a pyrazolo[3,4-d]pyrimidine derivative recently identified as promising anticancer agent, has shown favorable in vitro and in vivo activity profile against neuroblastoma (NB) models by acting as a competitive inhibitor of c-Src tyrosine kinase. Nevertheless, Si306 antitumor activity is associated with sub-optimal aqueous solubility, which might hinder its further development. Drug delivery systems were here developed with the aim to overcome this limitation, obtaining suitable formulations for more efficacious in vivo use. Si306 was encapsulated in pegylated stealth liposomes, undecorated or decorated with a monoclonal antibody able to specifically recognize and bind to the disialoganglioside GD2 expressed by NB cells (LP[Si306] and GD2-LP[Si306], respectively). Both liposomes possessed excellent morphological and physio-chemical properties, maintained over a period of two weeks. Compared to LP[Si306], GD2-LP[Si306] showed in vitro specific cellular targeting and increased cytotoxic activity against NB cell lines. After intravenous injection in healthy mice, pharmacokinetic profiles showed increased plasma exposure of Si306 when delivered by both liposomal formulations, compared to that obtained when Si306 was administered as free form. In vivo tumor homing and cytotoxic effectiveness of both liposomal formulations were finally tested in an orthotopic animal model of NB. Si306 tumor uptake resulted significantly higher when encapsulated in GD2-LP, compared to Si306, either free or encapsulated into untargeted LP. This, in turn, led to a significant increase in survival of mice treated with GD2-LP[Si306]. These results demonstrate a promising antitumor efficacy of Si306 encapsulated into GD2-targeted liposomes, supporting further therapeutic developments in pre-clinical trials and in the clinic for NB.

5.
Eur J Med Chem ; 235: 114274, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344902

RESUMO

Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Antineoplásicos/metabolismo , Apoptose , Autofagia , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Microtúbulos , Neoplasias Bucais/tratamento farmacológico
6.
J Med Chem ; 64(14): 9960-9988, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34251197

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel hHDAC6 inhibitors, having low inhibitory potency over hHDAC1 and hHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with low in vitro and in vivo toxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-ß1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.


Assuntos
Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
7.
ACS Chem Neurosci ; 12(9): 1716-1736, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890763

RESUMO

Temporal lobe epilepsy is the most common form of epilepsy, and current antiepileptic drugs are ineffective in many patients. The endocannabinoid system has been associated with an on-demand protective response to seizures. Blocking endocannabinoid catabolism would elicit antiepileptic effects, devoid of psychotropic effects. We herein report the discovery of selective anandamide catabolic enzyme fatty acid amide hydrolase (FAAH) inhibitors with promising antiepileptic efficacy, starting from a further investigation of our prototypical inhibitor 2a. When tested in two rodent models of epilepsy, 2a reduced the severity of the pilocarpine-induced status epilepticus and the elongation of the hippocampal maximal dentate activation. Notably, 2a did not affect hippocampal dentate gyrus long-term synaptic plasticity. These data prompted our further endeavor aiming at discovering new antiepileptic agents, developing a new set of FAAH inhibitors (3a-m). Biological studies highlighted 3h and 3m as the best performing analogues to be further investigated. In cell-based studies, using a neuroblastoma cell line, 3h and 3m could reduce the oxinflammation state by decreasing DNA-binding activity of NF-kB p65, devoid of cytotoxic effect. Unwanted cardiac effects were excluded for 3h (Langendorff perfused rat heart). Finally, the new analogue 3h reduced the severity of the pilocarpine-induced status epilepticus as observed for 2a.


Assuntos
Amidoidrolases , Anticonvulsivantes , Anticonvulsivantes/farmacologia , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Humanos , Convulsões
8.
Drug Chem Toxicol ; 44(3): 238-249, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-30822164

RESUMO

Lomefloxacin (LF) is interesting as a model molecule from a safety point of view because of its high potential for serious adverse drug effects (i.e. phototoxic reactions). In this study, MCM-41 mesoporous silica nanoparticles (MCM-41) were loaded with lomefloxacin, aiming to overcome the drug's intrinsic cytotoxicity. The good biocompatibility of the empty drug carrier (0.1-1.0 mg/ml) was established by the absence of red blood cell lysis (hemolysis assay). The cytotoxicity of empty MCM-41 and lomefloxacin-loaded MCM-41 (LF-MCM-41) was evaluated by using a battery of in vitro cytotoxicity assays: Alamar blue, lactate dehydrogenase release and reactive oxygen species formation by dichlorofluorescein assay. Three cell cultures models: hepatoma HepG2, fibroblasts L929 and endothelial EA.hy926 cells were used to compare the cytotoxicity and reactive oxygen species formation by free drug, empty MCM-41, and LF-MCM-41. The findings from the study indicated that empty MCM-41 (0.1-1.0 mg/ml) showed a low cytotoxic potential in HepG2, followed by L929 and EA.hy926 cells. Lomefloxacin loading in MCM-41 mesoporous silica nanocarrier reduced the cytotoxicity of the free lomefloxacin, especially in the high concentration (1.0 mg/ml MCM-41, containing 120 µg/ml LF). L929 and EA.hy926 cells were more sensitive to the protective effects of LF-MCM-41, compared to HepG2 cells. The results indicate that an improvement in lomefloxacin safety might be expected after incorporation in an appropriate drug delivery system.


Assuntos
Sistemas de Liberação de Medicamentos , Fluoroquinolonas/administração & dosagem , Nanopartículas , Dióxido de Silício/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/toxicidade , Linhagem Celular , Portadores de Fármacos/química , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fluoroquinolonas/toxicidade , Células Hep G2 , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
9.
Antioxidants (Basel) ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052585

RESUMO

Oxidative stress (OS) and the resulting reactive oxygen species (ROS) generation and inflammation play a pivotal role in the neuronal loss occurring during the onset of neurodegenerative diseases. Therefore, promising future drugs that would prevent or slow down the progression of neurodegeneration should possess potent radical-scavenging activity. Acacia catechu Willd. heartwood extract (AC), already characterized for its high catechin content, is endowed with antioxidant properties. The aim of the present study was to assess AC neuroprotection in both human neuroblastoma SH-SY5Y cells and rat brain slices treated with hydrogen peroxide. In SH-SY5Y cells, AC prevented a decrease in viability, as well as an increase in sub-diploid-, DAPI positive cells, reduced ROS formation, and recovered the mitochondrial potential and caspase-3 activation. AC related neuroprotective effects also occurred in rat brain slices as a reversal prevention in the expression of the main proteins involved in apoptosis and signalling pathways related to calcium homeostasis following OS-mediated injury. Additionally, unbiased quantitative mass spectrometry allowed for assessing that AC partially prevented the hydrogen peroxide-induced altered proteome, including proteins belonging to the synaptic vesicle fusion apparatus. In conclusion, the present results suggest the possibility of AC as a nutraceutical useful in preventing neurodegenerative diseases.

10.
Molecules ; 25(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824747

RESUMO

Blood pressure control in hypertensive subjects calls for changes in lifestyle, especially diet. Tomato is widely consumed and rich in healthy components (i.e., carotenoids, vitamins and polyphenols). The aim of this study was to evaluate the chemical composition and antihypertensive effects of locular gel reconstituted in serum of green tomatoes of "Camone" variety. Tomato serum and locular gel were chemically characterised. The antihypertensive effects of the locular gel in serum, pure tomatine, and captopril, administered by oral gavage, were investigated for 4 weeks in male spontaneously hypertensive and normotensive rats. Systolic blood pressure and heart rate were monitored using the tail cuff method. Body and heart weight, serum glucose, triglycerides and inflammatory cytokines, aorta thickness and liver metabolising activity were also assessed. Locular gel and serum showed good tomatine and polyphenols content. Significant reductions in blood pressure and heart rate, as well as in inflammatory blood cytokines and aorta thickness, were observed in spontaneously hypertensive rats treated both with locular gel in serum and captopril. No significant effects were observed in normotensive rats. Green tomatoes locular gel and serum, usually discarded during tomato industrial processing, are rich in bioactive compounds (i.e., chlorogenic acid, caffeic acid and rutin, as well as the glycoalkaloids, α-tomatine and dehydrotomatine) that can lower in vivo blood pressure towards healthier values, as observed in spontaneously hypertensive rats.


Assuntos
Anti-Hipertensivos/farmacologia , Géis/química , Hipertensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Solanum lycopersicum/química , Solanum lycopersicum/classificação , Animais , Pressão Sanguínea , Frequência Cardíaca , Masculino , Ratos , Ratos Endogâmicos SHR
11.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486438

RESUMO

The 1-methyl-4-phenylpyridinium (MPP+) is a parkinsonian-inducing toxin that promotes neurodegeneration of dopaminergic cells by directly targeting complex I of mitochondria. Recently, it was reported that some Cytochrome P450 (CYP) isoforms, such as CYP 2D6 or 2E1, may be involved in the development of this neurodegenerative disease. In order to study a possible role for CYP induction in neurorepair, we designed an in vitro model where undifferentiated neuroblastoma SH-SY5Y cells were treated with the CYP inducers ß-naphthoflavone (ßNF) and ethanol (EtOH) before and during exposure to the parkinsonian neurotoxin, MPP+. The toxic effect of MPP+ in cell viability was rescued with both ßNF and EtOH treatments. We also report that this was due to a decrease in reactive oxygen species (ROS) production, restoration of mitochondrial fusion kinetics, and mitochondrial membrane potential. These treatments also protected complex I activity against the inhibitory effects caused by MPP+, suggesting a possible neuroprotective role for CYP inducers. These results bring new insights into the possible role of CYP isoenzymes in xenobiotic clearance and central nervous system homeostasis.


Assuntos
Etanol/farmacologia , Mitocôndrias/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , beta-Naftoflavona/farmacologia , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Humanos , Cinética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Isoformas de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Xenobióticos
12.
Eur J Med Chem ; 183: 111674, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518969

RESUMO

Polypharmacology approaches may help the discovery of pharmacological tools for the study or the potential treatment of complex and multifactorial diseases as well as for addictions and also smoke cessation. In this frame, following our interest in the development of molecules able to modulate either the endocannabinoid or the dopaminergic system, and given the multiple and reciprocal interconnections between them, we decided to merge the pharmacophoric elements of some of our early leads for identifying new molecules as tools able to modulate both systems. We herein describe the synthesis and biological characterization of compounds 5a-j inspired by the structure of our potent and selective fatty acid amide hydrolase (FAAH) inhibitors (3a-c) and ligands of dopamine D2 or D3 receptor subtypes (4a,b). Notably, the majority of the new molecules showed a nanomolar potency of interaction with the targets of interest. The drug-likeliness of the developed compounds (5a-j) was investigated in silico while hERG affinity, selectivity profile (for some proteins of the endocannabinoid system), cytotoxicity profiles (on fibroblast and astrocytes), and mutagenicity (Ames test) were experimentally determined. Metabolic studies also served to complement the preliminary drug-likeliness profiling for compounds 3a and 5c. Interestingly, after assessing the lack of toxicity for the neuroblastoma cell line (IMR 32), we demonstrated a potential anti-inflammatory profile for 3a and 5c in the same cell line.


Assuntos
Amidoidrolases/antagonistas & inibidores , Dopamina/metabolismo , Endocanabinoides/metabolismo , Amidoidrolases/metabolismo , Ligação Competitiva , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Piperazinas/química , Piperazinas/farmacologia , Pirróis/química , Pirróis/farmacologia
13.
Cancers (Basel) ; 11(6)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248184

RESUMO

Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells' membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.

14.
Int J Mol Sci ; 19(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373287

RESUMO

Cytochrome P450 (CYP) isozymes vary their expression depending on the brain area, the cell type, and the presence of drugs. Some isoforms are involved in detoxification and/or toxic activation of xenobiotics in central nervous system. However, their role in brain metabolism and neurodegeneration is still a subject of debate. We have studied the inducibility of CYP isozymes in human neuroblastoma SH-SY5Y cells, treated with ß-naphtoflavone (ß-NF) or ethanol (EtOH) as inducers, by qRT-PCR, Western blot (WB), and metabolic activity assays. Immunohistochemistry was used to localize the isoforms in mitochondria and/or endoplasmic reticulum (ER). Tetrazolium (MTT) assay was performed to study the role of CYPs during methylphenyl pyridine (MPP⁺) exposure. EtOH increased mRNA and protein levels of CYP2D6 by 73% and 60% respectively. Both ß-NF and EtOH increased CYP2E1 mRNA (4- and 1.4-fold, respectively) and protein levels (64% both). The 7-ethoxycoumarin O-deethylation and dextromethorphan O-demethylation was greater in treatment samples than in controls. Furthermore, both treatments increased by 22% and 18%, respectively, the cell viability in MPP⁺-treated cells. Finally, CYP2D6 localized at mitochondria and ER. These data indicate that CYP is inducible in SH-SY5Y cells and underline this in vitro system for studying the role of CYPs in neurodegeneration.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Etanol/farmacologia , Fármacos Neuroprotetores/farmacologia , beta-Naftoflavona/farmacologia , 1-Metil-4-fenilpiridínio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Humanos
15.
Cell Death Dis ; 9(2): 142, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396391

RESUMO

Aberrant activation of the Hedgehog (HH) signaling is a critical driver in tumorigenesis. The Smoothened (SMO) receptor is one of the major upstream transducers of the HH pathway and a target for the development of anticancer agents. The SMO inhibitor Vismodegib (GDC-0449/Erivedge) has been approved for treatment of basal cell carcinoma. However, the emergence of resistance during Vismodegib treatment and the occurrence of numerous side effects limit its use. Our group has recently discovered and developed novel and potent SMO inhibitors based on acylguanidine or acylthiourea scaffolds. Here, we show that the two acylguanidine analogs, compound (1) and its novel fluoride derivative (2), strongly reduce growth and self-renewal of melanoma cells, inhibiting the level of the HH signaling target GLI1 in a dose-dependent manner. Both compounds induce apoptosis and DNA damage through the ATR/CHK1 axis. Mechanistically, they prevent G2 to M cell cycle transition, and induce signs of mitotic aberrations ultimately leading to mitotic catastrophe. In a melanoma xenograft mouse model, systemic treatment with 1 produced a remarkable inhibition of tumor growth without body weight loss in mice. Our data highlight a novel route for cell death induction by SMO inhibitors and support their use in therapeutic approaches for melanoma and, possibly, other types of cancer with active HH signaling.


Assuntos
Replicação do DNA/efeitos dos fármacos , Guanidinas/farmacologia , Proteínas Hedgehog/metabolismo , Melanoma/patologia , Mitose/efeitos dos fármacos , Transdução de Sinais , Estresse Fisiológico , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Humanos , Concentração Inibidora 50 , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor Smoothened/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Control Release ; 270: 37-52, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29191785

RESUMO

Drug efflux transporters, in particular P-glycoprotein (Pgp), limit the success of chemotherapy. We previously found that synthetic doxorubicin conjugated with nitric oxide (NO)-releasing group overcomes resistance by inducing a NO-mediated inhibition of Pgp. Here we produced the first liposomal formulations of this nitrooxy-doxorubicin decorated with folic acid (FA), termed LNDF, in order to improve their active targeting against Pgp-expressing tumors. Folate was inserted onto liposomes surface using two different methods and the formulations were compared with respect to their technological features and in vitro behavior. By analyzing human and murine breast cancer cells with different expression of FA receptor (FAR) and Pgp, we demonstrated that LNDF are internalized in a FAR-dependent manner and achieve maximal anti-tumor efficacy against FAR-positive/Pgp-positive cells. Upon uptake of LNDF, nitrooxy-doxorubicin was delivered within nucleus, where it induced cell cycle arrest and DNA damages, and mitochondria, where it impaired the mitochondrial energy metabolism and triggered mitochondria-dependent apoptosis. LNDF reduced the growth of FAR-positive/Pgp-positive tumors and prevented tumor formation in mice, whereas doxorubicin and Caelyx® failed. LNDF cardiotoxicity was comparable to Caelyx®. The sensitivity to LNDF was maintained in tumors exposed to repeated cycles of the drug and in cells derived from the exposed tumors, excluding the onset of secondary resistance. By combining an innovative multitarget cargo drug, conceived to achieve high efficacy against Pgp-expressing cells, and appropriate strategies of liposome formulation and decoration, we produced a therapeutic tool that may represent a significant advancement in the treatment of FAR-positive/Pgp-positive tumors.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Ácido Fólico/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Óxido Nítrico/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/química , Feminino , Ácido Fólico/química , Transportadores de Ácido Fólico/metabolismo , Humanos , Lipossomos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Óxido Nítrico/química , Ratos
17.
Toxicol In Vitro ; 47: 89-93, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29158021

RESUMO

This study was designed to unveil effects of 5-nm sized, polyvinylpyrrolidone-coated gold nanoparticles (AuNPs) on vascular CaV1.2 and CaV3.1 channels. Ba2+ currents through both channels (IBa1.2 and IBa3.1) were recorded in single myocytes isolated from the rat tail main artery by means of the whole-cell patch-clamp method. AuNPs increased IBa1.2 and IBa3.1 amplitude in a concentration- and Vh-dependent manner. Neither the voltage dependence of inactivation and activation curves nor inactivation and activation kinetics were affected by AuNPs. In conclusion, these findings warrant further investigation to clarify whether different types of NPs possess the same stimulatory activity and may represent a toxic hazard to humans.


Assuntos
Artérias/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Poluentes Ambientais/toxicidade , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Animais , Artérias/citologia , Artérias/metabolismo , Bário/metabolismo , Canais de Cálcio/química , Canais de Cálcio Tipo L/química , Células Cultivadas , Poluentes Ambientais/química , Ouro/química , Masculino , Potenciais da Membrana , Nanopartículas Metálicas/química , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Tamanho da Partícula , Técnicas de Patch-Clamp , Povidona/química , Povidona/toxicidade , Ratos Wistar , Análise de Célula Única , Propriedades de Superfície , Cauda , Testes de Toxicidade Aguda
18.
J Med Chem ; 60(14): 6305-6320, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28650650

RESUMO

Pyrazolo[3,4-d]pyrimidines are potent protein kinase inhibitors with promising antitumor activity but suboptimal aqueous solubility, consequently worth being further optimized. Herein, we present the one-pot two-step procedure for the synthesis of a set of pyrazolo[3,4-d]pyrimidine prodrugs (1a-8a and 9a-e) with higher aqueous solubility and enhanced pharmacokinetic and therapeutic properties. ADME studies demonstrated for the most promising prodrugs a better aqueous solubility, a favorable hydrolysis in human and murine serum, and an increased ability to cross cell membranes with respect to the parental drugs, explaining their better 24 h in vitro cytotoxicity against human glioblastoma U87 cell line. Finally, the 4-4a couple of drug/prodrug was also evaluated in vivo, revealing a profitable pharmacokinetic profile of the prodrug associated with a good efficacy. The application of the prodrug approach demonstrated to be a successful strategy for improving aqueous solubility of the parental drugs, determining a positive impact also in their biological efficacy.


Assuntos
Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Pró-Fármacos/química , Inibidores de Proteínas Quinases/química , Pirazóis/química , Pirimidinas/química , Bibliotecas de Moléculas Pequenas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Membranas Artificiais , Camundongos Endogâmicos C57BL , Camundongos Nus , Microssomos Hepáticos/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Solubilidade , Relação Estrutura-Atividade
19.
Sci Rep ; 6: 21509, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898318

RESUMO

Pyrazolo[3,4-d]pyrimidines are a class of compounds with a good activity against several cancer cell lines. Despite the promising anticancer activity, these molecules showed a poor aqueous solubility. This issue could threat the future development of pyrazolo[3,4-d]pyrimidines as clinical drug candidates. With the aim of improving their solubility profile and consequently their pharmacokinetic properties, we have chosen four compounds (1-4) on the base of their anti-neuroblastoma activity and we have developed albumin nanoparticles and liposomes for the selected candidates. Albumin nanoparticles and liposomes were prepared and characterized regarding size and ζ-potential distribution, polidispersity index, entrapment efficiency and activity against SH-SY5Y human neuroblastoma cell line. The most promising nanosystem, namely LP-2, was chosen to perform further studies: confocal microscopy, stability and drug release in physiological conditions, and biodistribution. Altogether, the obtained data strongly indicate that the encapsulation of pyrazolo[3,4-d]pyrimidines in liposomes represent an effective method to overcome the poor water solubility.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Nanopartículas/química , Neuroblastoma/patologia , Pirazóis/administração & dosagem , Pirazóis/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Solubilidade
20.
Biochem Pharmacol ; 104: 42-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26807479

RESUMO

Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding energy (LBE, kcal/mol) values (mean ± SD) ranging from -11.8 ± 0.54 (valspodar) to -3.98 ± 0.01 (4). Lys234, Ser952 and Tyr953 residues formed H-bonds with most of the compounds. Only 2c docked also at ATP binding site (LBE value of -6.9 ± 0.30 kcal/mol). Inhibition of P-gp-mediated R123 efflux by 12 N,N-bis(cyclohexanolamine)aryl esters and 4 significantly correlated with LBE values. DMD analysis of EPI, (3)H-1EPI, (3)H-2EPI, (14)C-1EPI, (14)C-2EPI, R123 and 2c before and after previous docking of each of them indicated that pre-docking of either 2c or EPI significantly reduced LBE of both EPI and R123, and that of both (3)H-2EPI and (14)C-2EPI, respectively. Since the clusters of DBD amino acid residues interacting with EPI were different, if EPI docked alone or after pre-docking of EPI or 2c, the existence of alternative secondary binding site for EPI on P-gp is credible. In conclusion, 2c may allocate the drug-binding pocket and reduce strong binding of EPI and R123 in agreement with P-gp inhibition experiments, where 2c reduced efflux of EPI and R123.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Cicloexanóis/metabolismo , Epirubicina/metabolismo , Simulação de Acoplamento Molecular , Rodamina 123/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sítios de Ligação , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cicloexanóis/química , Epirubicina/química , Ésteres , Camundongos , Estrutura Molecular , Ligação Proteica , Transporte Proteico , Rodamina 123/química , Especificidade por Substrato , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA