Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 7(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34460516

RESUMO

(1) Background: Transfer learning refers to machine learning techniques that focus on acquiring knowledge from related tasks to improve generalization in the tasks of interest. In magnetic resonance imaging (MRI), transfer learning is important for developing strategies that address the variation in MR images from different imaging protocols or scanners. Additionally, transfer learning is beneficial for reutilizing machine learning models that were trained to solve different (but related) tasks to the task of interest. The aim of this review is to identify research directions, gaps in knowledge, applications, and widely used strategies among the transfer learning approaches applied in MR brain imaging; (2) Methods: We performed a systematic literature search for articles that applied transfer learning to MR brain imaging tasks. We screened 433 studies for their relevance, and we categorized and extracted relevant information, including task type, application, availability of labels, and machine learning methods. Furthermore, we closely examined brain MRI-specific transfer learning approaches and other methods that tackled issues relevant to medical imaging, including privacy, unseen target domains, and unlabeled data; (3) Results: We found 129 articles that applied transfer learning to MR brain imaging tasks. The most frequent applications were dementia-related classification tasks and brain tumor segmentation. The majority of articles utilized transfer learning techniques based on convolutional neural networks (CNNs). Only a few approaches utilized clearly brain MRI-specific methodology, and considered privacy issues, unseen target domains, or unlabeled data. We proposed a new categorization to group specific, widely-used approaches such as pretraining and fine-tuning CNNs; (4) Discussion: There is increasing interest in transfer learning for brain MRI. Well-known public datasets have clearly contributed to the popularity of Alzheimer's diagnostics/prognostics and tumor segmentation as applications. Likewise, the availability of pretrained CNNs has promoted their utilization. Finally, the majority of the surveyed studies did not examine in detail the interpretation of their strategies after applying transfer learning, and did not compare their approach with other transfer learning approaches.

2.
Molecules ; 25(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971952

RESUMO

Consumers demand the use of eco-friendly fungicides to treat fruit and vegetables and governmental authorities have unauthorized the application of chemical antifungals for the efficient control of sour rot. In the present research, the microwave irradiation (MW) method was used to encapsulate thymol into 2-hydroxylpropyl-beta-cyclodextrin (HP-ß-CD) and the effect of these HP-ß-CD on controlling sour rot in citrus fruit, caused by Geotrichum citri-aurantii, was evaluated. Amounts of 25 and 50 mM of HP-ß-CD-thymol were used, and compared with propiconazole, to control the decay of inoculated lemon fruit. The treatments were performed in curative and preventive experiments. The incidence and severity of Geotrichum citri-aurantii in 25 and 50 mM HP-ß-CD-thymol-treated fruit were reduced in both experiments. The preventive 50 mM HP-ß-CD-thymol treatment showed the best effect, reducing the sour rot, respiration rate and fruit weight loss during storage at 20 °C. HP-ß-CD-thymol increased polyphenol concentration and the activity of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in lemon peel, and the highest effects were found with the 50-mM dose. In conclusion, the results show that the use of thymol encapsulated by MW into HP-ß-CD could be an effective and sustainable tool, a substitute to the synthetic fungicides, for G. citri-auriantii control in citrus fruit.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Farmacorresistência Fúngica/efeitos dos fármacos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Timol/química , Timol/farmacologia , Cápsulas , Citrus/microbiologia , Geotrichum/efeitos dos fármacos , Geotrichum/fisiologia , Testes de Sensibilidade Microbiana
3.
Int J Food Microbiol ; 334: 108807, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32835997

RESUMO

The main goal of this study was to describe impact of preharvest application of methyl salicylate (MeSA), acetyl salicylic acid (ASA) and salicylic acid (SA) on the reduction of disease caused by Botrytis cinerea in two table grape cultivars ('Crimson' and 'Magenta'). Based on previous studies, MeSA and SA were applied at 0.1 and 0.01 mM for both cultivars, while ASA was applied at 1 mM in 'Crimson' and 0.1 mM in 'Magenta'. At time of harvest, berry maturity-quality attributes, bioactive compounds and antioxidant enzymes were determined. In addition, grapes were artificially inoculated with B. cinerea spores, and the berries were ranked for visual decay incidence after 5 days of inoculation. Salicylates preharvest treatments led to higher total acidity, content of bioactive compounds and activity of antioxidant enzymes in treated than in control berries. The application of salicylate derivatives induced resistance to B. cinerea spoilage, since higher percentage of berries with no symptoms was observed and on the contrary, the highest percentages of berries were obtained in control grapes. All preharvest treatments with SA, ASA and MeSA alleviated postharvest disease caused by B. cinerea probably due to increasing levels of phenolic compounds and activity of antioxidant enzymes, although the best results were obtained with MeSA at 0.1 mM. Also, for this treatment and dose, higher quality properties, such as higher concentrations of ascorbic, succinic and fumaric acids, were observed compared with no treated-grapes.


Assuntos
Antioxidantes/metabolismo , Botrytis/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Ácido Salicílico/farmacologia , Vitis/microbiologia , Aspirina/farmacologia , Resistência à Doença/efeitos dos fármacos , Conservação de Alimentos/métodos , Fenóis/metabolismo , Doenças das Plantas/microbiologia , Salicilatos/farmacologia , Vitis/efeitos dos fármacos , Vitis/metabolismo
4.
J Sci Food Agric ; 97(4): 1220-1228, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27312073

RESUMO

BACKGROUND: Sweet cherries are much appreciated by consumers as a result of their organoleptic quality attributes and antioxidant properties, although they deteriorate rapidly after harvest. Different preharvest strategies have been carried out to increase their quality at the time of harvest. We present data regarding the effect of preharvest salicylic acid (SA) and acetyl salicylic acid (ASA) treatments on sweet cherry quality during postharvest storage. RESULTS: At harvest and during postharvest storage, sweet cherry fruits ('Sweet Heart', 'Sweet Late' and 'Lapins') from SA (0.5 mmol L-1 ) and ASA (1 mmol L-1 ) treated trees had a higher colour (lower chroma index), firmness, total soluble solids, total phenolics, total anthocyanins and hydrophilic total antioxidant activity. In addition, the activity of the antioxidant enzymes catalase, peroxidase, superoxide dismutase and ascorbate peroxidase was also enhanced in SA- and ASA-treated cherries. CONCLUSION: Both SA and ASA preharvest treatments could be promising tools for improving sweet cherry quality at harvest and after storage, with an additional effect on delaying the postharvest ripening process by increasing the levels of antioxidant compounds and the activity of the antioxidant enzymes. © 2016 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Antioxidantes/metabolismo , Aspirina , Conservação de Alimentos/métodos , Frutas , Prunus , Ácido Salicílico , Antocianinas/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Cor , Manipulação de Alimentos , Armazenamento de Alimentos , Frutas/metabolismo , Frutas/normas , Dureza , Humanos , Oxirredução , Peroxidase/metabolismo , Fenóis/metabolismo , Superóxido Dismutase/metabolismo , Paladar
5.
Food Chem ; 160: 226-32, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24799232

RESUMO

The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers.


Assuntos
Antocianinas/análise , Antioxidantes/análise , Aspirina/química , Frutas/química , Extratos Vegetais/química , Prunus/química , Ácido Salicílico/análise
6.
Crit Rev Food Sci Nutr ; 47(6): 543-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17653980

RESUMO

Ethylene is a plant hormone controlling a wide range of physiological processes in plants. During postharvest storage of fruit and vegetables ethylene can induce negative effects including senescence, over-ripening, accelerated quality loss, increased fruit pathogen susceptibility, and physiological disorders, among others. Apart from the endogenous ethylene production by plant tissues, external sources of ethylene (e.g. engine exhausts, pollutants, plant, and fungi metabolism) occur along the food chain, in packages, storage chambers, during transportation, and in domestic refrigerators. Thus, it is a great goal in postharvest to avoid ethylene action. This review focuses on tools which may be used to inhibit ethylene biosynthesis/action or to remove ethylene surrounding commodities in order to avoid its detrimental effects on fruit and vegetable quality. As inhibitors of ethylene biosynthesis and action, good results have been found with polyamines and 1-methylcyclopropene (1-MCP) in terms of maintenance of fruit and vegetable quality and extension of postharvest shelf-life. As ethylene scavengers, the best results can be achieved by adsorbers combined with catalysts, either chemical or biological (biofilters).


Assuntos
Etilenos/antagonistas & inibidores , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Frutas , Verduras , Ciclopropanos/farmacologia , Etilenos/biossíntese , Filtração , Frutas/metabolismo , Frutas/normas , Humanos , Oxirredução , Poliaminas/farmacologia , Controle de Qualidade , Fatores de Tempo , Verduras/metabolismo , Verduras/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA