RESUMO
Many activities have been described for propolis, including, antiviral, antibacterial, antifungal, anti-inflammatory, immunoregulatory, antioxidant and wound healing properties. Recently, propolis has been highlighted due to its potential application in the pharmaceutical and cosmetic industries, motivating a better understanding of its antioxidant and anti-inflammatory activities. Propolis and its main polyphenolic compounds presented high antioxidant activity, and effectiveness as broad spectrum UVB and UVA photoprotection sunscreens. Through a qualitative phytochemical screening, the ethanolic red propolis extracts (EEPV) (70% at room temperature and 70% at a hot temperature) presented a positive result for flavonoids and terpenoids. It presented an antioxidant activity for reducing 50% of DPPH of 17 and 12 µg/mL for extraction at room temperature and at a hot temperature, respectively. The UPLC-QTOF-MS/MS analysis allowed the annotation of 40 substances for EEPV-Heated and 42 substances for EEPV-Room Temperature. The IC50 results of the ABTS scavenging activity was 4.7 µg/mL for both extractions, at room temperature and at a hot temperature. Additionally, we also evaluated the cytotoxic profile of propolis extracts against macrophage (RAW 264.7 cells) and keratinocytes (HaCaT cells), which showed non-cytotoxic doses in cell viability assays even after a long period of exposure. In addition, propolis extracts showed antibacterial activity for Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), demonstrating potential biological activity for the creation of formulations aimed at disease control and prevention.
Assuntos
Anti-Infecciosos , Ascomicetos , Própole , Própole/farmacologia , Própole/química , Antioxidantes/farmacologia , Antioxidantes/química , Protetores Solares/farmacologia , Espectrometria de Massas em Tandem , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
Cancer is one of the deadliest diseases worldwide and has been responsible for millions of deaths. However, developing a satisfactory smart multifunctional material combining different strategies to kill cancer cells poses a challenge. This work aims at filling this gap by developing a composite material for cancer treatment through hyperthermia and drug release. With this purpose, magnetic nanoparticles were coated with a polymer matrix consisting of poly (L-co-D,L lactic acid-co-trimethylene carbonate) and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. High-resolution transmission electron microscopy and selected area electron diffraction confirmed magnetite to be the only iron oxide in the sample. Cytotoxicity and heat release assays on the hybrid nanoparticles were performed here for the first time. The heat induction results indicate that these new magnetic hybrid nanoparticles are capable of increasing the temperature by more than 5 °C, the minimal temperature rise required for being effectively used in hyperthermia treatments. The biocompatibility assays conducted under different concentrations, in the presence and in the absence of an external alternating current magnetic field, did not reveal any cytotoxicity. Therefore, the overall results indicate that the investigated hybrid nanoparticles have a great potential to be used as carrier systems for cancer treatment by hyperthermia.
Assuntos
Calefação , Hipertermia Induzida , Humanos , Hipertermia , EletricidadeRESUMO
This study synthesized and characterized a nanohybrid composed of graphene oxide (GO) functionalized with sodium hyaluronate (HY) (GO-HY), evaluated its effect in vitro and determined its osteogenic potential in vivo. The synthesized nanohybrid was analyzed by Scanning electron microscopy (SEM), Raman spectrometry, Thermogravimetry, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction. MC3T3-E1 cell viability was assessed by MTT assay in 48 and 72 h. Bone defects were created in tibia of 40 Wistar rats and filled with blood clot (control), 1% HY, GO (50, 100 and 200 µg/mL) and the nanohybrid (50, 100 and 200 µg/mL). After 7 and 14 days, histomorphometric analysis was carried out to assess osteogenic potential of the nanohybrid. Immunohistochemical analysis evaluated the expression of vascular endothelial growth factor (VEGF) in bone defects. Thermogravimetric analysis, Raman and FTIR spectrometry confirmed the functionalization of GO with HY by covalent bonds. Five µg/mL concentrations of the nanohybrid did not alter the viability of the MC3T3-E1 cells. Histomorphometric analysis demonstrated that the nanohybrid at 100 µg/mL significantly accelerated the bone repair in tibia of rats when compared to controls (p < 0.01). Immunohistochemical analysis showed a significantly less intense VEGF expression in tibia treated with the nanohybrid when compared to controls (p < 0.05). The nanohybrid composed of GO functionalized with HY was able to induce the acceleration of the tissue regeneration process in bone defects created in the tibia of rats. This novel nanohybrid is a promising material for the field of bone tissue engineering.
Assuntos
Grafite , Ácido Hialurônico , Animais , Grafite/farmacologia , Ácido Hialurônico/farmacologia , Ratos , Ratos Wistar , Tíbia , Fator A de Crescimento do Endotélio VascularRESUMO
The host immune system tends to reject xenogenic-implanted cells making tumor development in adult host animal models difficult. Immune system suppression is used for successful xenotransplantation of human cancer cells in many animal models. The studies of cancer development processes in vivo offer opportunities to understand cancer biology and discover new therapeutic strategies. In this context, zebrafish is a model that has been widely applied in the study of human diseases, such as cancer. However, the long-term immunosuppression of these adult zebrafish is still under study as a xenograft animal model for human cancer. This work aimed to evaluate the effects of 21 days of (long-term) exposure of dexamethasone in zebrafish-transplanted with MGSO-3 cells, human breast tumor cell line. Our results show that the animals, while kept on dexamethasone treatment, remained with a 50% reduction in the number of peripheral lymphocytes. In vitro data demonstrated that up to 7 days of dexamethasone treatment did not alter the morphology, proliferation, or viability of MGSO-3 cells. The animals that received a prolonged dexamethasone treatment allowed the engraftment of tumor cells in 100% of the zebrafish tested. These animals also showed tumor progression over 21 days. The experimental group that received only previous exposure to dexamethasone had their tumors regressed after 14 days. In conclusion, the prolonged use of dexamethasone in zebrafish showed a potential strategy for in vivo monitoring of xenograft tumor growth for development studies, as well as in anticancer drug discovery.
RESUMO
Bioactive glasses (BGs) have shown great potential for tissue regeneration and their composition flexibility allows the incorporation of different ions with physiological activities and therapeutic properties in the glass network. Among the many ions that could be incorporated, cobalt (Co) is a significant one, as it mimics hypoxia, triggering the formation of new blood vessels by the vascular endothelial growth factor A (VEGFA), due to the stabilizing effect on the hypoxia inducible factor 1 subunit alpha (HIF1A), an activator of angiogenesis-related genes, and is therefore of great interest for tissue engineering applications. However, despite its promising properties, the effects of glasses incorporated with Co on angiogenesis, through human umbilical cord vein endothelial cells (HUVECs) studies, need to be further investigated. Therefore, this work aimed to evaluate the biocompatibility and angiogenic potential of a new sol-gel BG, derived from the SiO2 -CaO-P2 O5 -CoO system. The structural evaluation showed the predominance of an amorphous glass structure, and the homogeneous presence of cobalt in the samples was confirmed. in vitro experiments showed that Co-containing glasses did not affect the viability of HUVECs, stimulated the formation of tubes and the gene expression of HIF1A and VEGFA. in vivo experiments showed that Co-containing glasses stimulated VEGFA and HIF1A expression in blood vessels and cell nuclei, respectively, in the deep dermis layer of the dorsal region of rats, featuring considerable local stimulation of the angiogenesis process due to Co-release. Co-containing glasses showed therapeutic effect, and Co incorporation is a promising strategy for obtaining materials with superior angiogenesis properties for tissue engineering applications.