Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(7): 1983-1995, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022364

RESUMO

The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding. Subsequent nuclear magnetic resonance (NMR) analysis showed that graveoline's interaction with KRAS depends on C-terminal O-methylation. Moreover, our findings revealed multiple interaction sites, suggesting weak engagement with the KRAS G domain. Using nanodiscs as a membrane mimetic, further characterization through NMR and Förster resonance energy transfer (FRET) studies demonstrated graveoline's ability to perturb KRAS membrane interaction in a biochemical setting. Our biophysical approach sheds light on the intricate molecular mechanisms underlying KRAS-ligand interactions, providing valuable insights into understanding the KRAS-associated pathophysiology. These findings contribute to the translational aspect of our study, offering potential avenues for further research targeting KRAS membrane association with the potential to lead to a new class of RAS therapeutics.

2.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418613

RESUMO

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Transdução de Sinais
3.
ACS Chem Biol ; 18(9): 2082-2093, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579045

RESUMO

Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.


Assuntos
Transdução de Sinais , Proteínas ras , Proteínas ras/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Lipídeos , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
J Chem Theory Comput ; 19(9): 2658-2675, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37075065

RESUMO

Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 µm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Proteínas de Membrana/química , Membrana Celular/metabolismo , Aprendizado de Máquina , Lipídeos
5.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35778842

RESUMO

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Assuntos
Cisteína , Proteínas Proto-Oncogênicas c-raf , Sítios de Ligação , Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Solventes/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983849

RESUMO

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Assuntos
Membrana Celular/enzimologia , Lipídeos/química , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Humanos
7.
Biophys J ; 120(18): 4055-4066, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34384763

RESUMO

KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras) , Conformação Molecular , Fosfatidilserinas , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
J Membr Biol ; 254(2): 201-216, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825026

RESUMO

Small GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms.


Assuntos
Membrana Celular/química , Lipídeos , Proteínas Proto-Oncogênicas p21(ras)/química , Lipídeos/química , Conformação Proteica
9.
Biomolecules ; 11(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802474

RESUMO

RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.


Assuntos
Nanopartículas/uso terapêutico , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Multimerização Proteica
10.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32913056

RESUMO

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular
11.
Proc Natl Acad Sci U S A ; 116(35): 17290-17297, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399543

RESUMO

Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas p21(ras)/genética
12.
Sci Rep ; 8(1): 8461, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855542

RESUMO

Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which is consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.


Assuntos
Membrana Celular/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo , Sítios de Ligação , Cisteína/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Quinases raf/química , Quinases raf/genética , Proteínas ras/química , Proteínas ras/genética
13.
Sci Rep ; 5: 15916, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522388

RESUMO

Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.


Assuntos
Lipídeos/fisiologia , Prenilação de Proteína/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Biofísica/métodos , Membrana Celular/metabolismo , Células Cultivadas , Guanosina Trifosfato/metabolismo , Humanos , Insetos/metabolismo , Metilação , Ligação Proteica/fisiologia , Quinases raf/metabolismo
14.
Curr Urol Rep ; 12(1): 34-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21061098

RESUMO

The development and progression of many human diseases often result in changes in gene expression and protein and metabolite concentrations. Changes at the protein and metabolite level often are detectable in biological fluids and tissues before the appearance of clinical symptoms, rendering them useful diagnostic and prognostic biomarkers. As with many conditions, the discovery of a sensitive and specific urinary biomarker for bladder cancer would save lives and reduce the suffering due to this condition. A number of potential urinary protein biomarkers for bladder cancer have been identified, but they lack the sensitivity and specificity required to replace cystoscopy and histopathology. We discuss the use of mass spectrometry and nuclear magnetic resonance spectroscopy for the detection of metabolites in biological samples, comment on their advantages and limitations, and discuss recently published work in urine metabolic profiling for bladder cancer detection.


Assuntos
Metaboloma , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo , Humanos , Espectroscopia de Ressonância Magnética
15.
J Nat Prod ; 73(3): 479-81, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20000454

RESUMO

Demand for the experimental antineoplastic agent schweinfurthin A, for developmental testing, prompted a re-collection of leaf material of Macaranga schweinfurthii from the original collection site in Cameroon. During chromatographic purification of the organic solvent extract, analytical UPLC-PDA-TOFMS of stilbene-enriched fractions revealed the presence of six known schweinfurthins and two previously unknown stilbenes. The structures of these new compounds, schweinfurthins I and J (1 and 2), were elucidated by 1D- and 2D-NMR techniques.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Euphorbiaceae/química , Plantas Medicinais/química , Estilbenos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Camarões , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química , Estilbenos/química , Estilbenos/farmacologia
16.
Genome Med ; 1(1): 5, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19348692

RESUMO

Metabolic profiling using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) is integral to the rapidly expanding field of metabolomics, which is making progress in toxicology, plant science and various diseases, including cancer. In the area of oncology and metabolic phenotyping, researchers have probed the known changes in malignant cellular pathways using new experimental techniques to gain more insights, and others are exploiting these same cellular pathways for therapeutic drug targets and for novel cancer biomarkers, with the ultimate goal of translation to the clinic. Here, we discuss the challenges and opportunities in metabolic phenotyping for discovering novel cancer biomarkers, and we assess the clinical applicability of MS and NMR.

17.
J Nat Prod ; 70(3): 428-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17378533

RESUMO

Two new chondropsin-type macrolide lactams, poecillastrins B (1) and C (2), were isolated from aqueous extracts of the marine sponge Poecillastra sp. These trace metabolites were isolated in low yield (400-600 microg), and their structures were determined primarily by analysis of NMR data acquired using a cyrogenically cooled probe. High-quality 1D and 2D NMR data sets allowed complete assignment of the spectroscopic data and defined the new structures as 35-membered ring analogues of poecillastrin A (3). Compounds 1 and 2 showed potent cytotoxic activity against a human melanoma tumor cell line (LOX) with an IC50 value of less than 1 microg/mL.


Assuntos
Antineoplásicos/isolamento & purificação , Lactamas/isolamento & purificação , Macrolídeos/isolamento & purificação , Poríferos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Bahamas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactamas/química , Lactamas/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Melanoma , Estrutura Molecular , Células Tumorais Cultivadas
18.
Dis Markers ; 19(4-5): 169-83, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15258332

RESUMO

The advent of systems biology approaches that have stemmed from the sequencing of the human genome has led to the search for new methods to diagnose diseases. While much effort has been focused on the identification of disease-specific biomarkers, recent efforts are underway toward the use of proteomic and metabonomic patterns to indicate disease. We have developed and contrasted the use of both proteomic and metabonomic patterns in urine for the detection of interstitial cystitis (IC). The methodology relies on advanced bioinformatics to scrutinize information contained within mass spectrometry (MS) and high-resolution proton nuclear magnetic resonance (1H-NMR) spectral patterns to distinguish IC-affected from non-affected individuals as well as those suffering from bacterial cystitis (BC). We have applied a novel pattern recognition tool that employs an unsupervised system (self-organizing-type cluster mapping) as a fitness test for a supervised system (a genetic algorithm). With this approach, a training set comprised of mass spectra and 1H-NMR spectra from urine derived from either unaffected individuals or patients with IC is employed so that the most fit combination of relative, normalized intensity features defined at precise m/z or chemical shift values plotted in n-space can reliably distinguish the cohorts used in training. Using this bioinformatic approach, we were able to discriminate spectral patterns associated with IC-affected, BC-affected, and unaffected patients with a success rate of approximately 84%.


Assuntos
Infecções Bacterianas/diagnóstico , Cistite Intersticial/diagnóstico , Cistite/diagnóstico , Proteômica , Infecções Bacterianas/urina , Biologia Computacional , Cistite/urina , Cistite Intersticial/urina , Feminino , Humanos , Masculino , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular
19.
Org Lett ; 4(19): 3293-6, 2002 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12227772

RESUMO

Poecillastrin A (1), a new polyketide-derived macrolide lactam, was isolated from a deep-water collection of the marine sponge Poecillastra species. The structure of poecillastrin A (1) was assigned using NMR data acquired at 500 MHz with an inverse-detection cryogenic probe and at 800 MHz with a room-temperature probe.


Assuntos
Antineoplásicos/química , Lactamas/química , Macrolídeos/química , Espectroscopia de Ressonância Magnética , Poríferos/química , Animais , Temperatura Baixa , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA