Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0269269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36149869

RESUMO

Despite growing interest in edible seaweeds, there is limited information on seaweed chemical contaminant levels in the Salish Sea. Without this knowledge, health-based consumption advisories can not be determined for consumers that include Tribes and First Nations, Asian and Pacific Islander community members, and recreational harvesters. We measured contaminant concentrations in edible seaweeds (Fucus distichus, F. spiralis, and Nereocystis luetkeana) from 43 locations in the Salish Sea. Metals were analyzed in all samples, and 94 persistent organic pollutants (POPs) (i.e. 40 PCBs, 15 PBDEs, 17 PCDD/Fs, and 22 organochlorine pesticides) and 51 PAHs were analyzed in Fucus spp. We compared concentrations of contaminants to human health-based screening levels calculated from the USEPA and to international limits. We then worked with six focal contaminants that either exceeded screening levels or international limits (Cd, total Hg, Pb, benzo[a]pyrene [BaP], and PCBs) or are of regional interest (total As). USEPA cancer-based screening levels were exceeded in 30 samples for the PCBs and two samples for BaP. Cadmium concentrations did not exceed the USEPA noncancer-based screening level but did exceed international limits at all sites. Lead exceeded international limits at three sites. Because there are no screening levels for total Hg and total As, and to be conservative, we made comparisons to methyl Hg and inorganic As screening levels. All samples were below the methyl Hg and above the inorganic As screening levels. Without knowledge of the As speciation, we cannot assess the health risk associated with the As. While seaweed was the focus, we did not consider contaminant exposure from consuming other foods. Other chemicals, such as contaminants of emerging concern (e.g., PFAS, pharmaceuticals and personal care products), should also be considered. Additionally, although we focused on toxicological aspects, there are cultural and health benefits of seaweed use that may affect consumer choice.


Assuntos
Fluorocarbonos , Mercúrio , Praguicidas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Alga Marinha , Poluentes Químicos da Água , Benzo(a)pireno , Cádmio , Dibenzofuranos , Monitoramento Ambiental , Éteres Difenil Halogenados , Humanos , Chumbo , Mercúrio/análise , Poluentes Orgânicos Persistentes , Praguicidas/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
2.
Oecologia ; 84(2): 158-163, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28312747

RESUMO

Many tropical brown algae have low levels of polyphenolic compounds and are readily consumed by herbivorous fish. In contrast, temperate brown algae often produce large quantities of phenolic compounds causing them to be distasteful to herbivorous gastropods and sea urchins. We hypothesized that tropical brown algae do not use phenolic compounds as antiherbivore defenses because these compounds are not effective deterrents against tropical fish. To test our hypothesis, we assessed the ability of extracts from 8 tropical and 13 temperate algae with a broad range of phenolic levels to deter feeding by herbivorous fishes on Guam. Extracts of the high-phenolic (>2% d.w.) temperate brown algae consistently deterred feeding by herbivorous fishes, whereas extracts from low phenolic (<2% d.w.) temperate and 6 of 8 low-phenolic tropical brown algae did not. Thus, phenolic compounds could be effective feeding deterrents towards herbivorous fishes on Guam, but for unknown reasons they are not used by Guamanian brown algae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA