Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 10(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472246

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, and neuroinflammation is an important hallmark of the pathogenesis. Tumor necrosis factor (TNF) might be detrimental in AD, though the results coming from clinical trials on anti-TNF inhibitors are inconclusive. TNFR1, one of the TNF signaling receptors, contributes to the pathogenesis of AD by mediating neuronal cell death. The blood-cerebrospinal fluid (CSF) barrier consists of a monolayer of choroid plexus epithelial (CPE) cells, and AD is associated with changes in CPE cell morphology. Here, we report that TNF is the main inflammatory upstream mediator in choroid plexus tissue in AD patients. This was confirmed in two murine AD models: transgenic APP/PS1 mice and intracerebroventricular (icv) AßO injection. TNFR1 contributes to the morphological damage of CPE cells in AD, and TNFR1 abrogation reduces brain inflammation and prevents blood-CSF barrier impairment. In APP/PS1 transgenic mice, TNFR1 deficiency ameliorated amyloidosis. Ultimately, genetic and pharmacological blockage of TNFR1 rescued from the induced cognitive impairments. Our data indicate that TNFR1 is a promising therapeutic target for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Doença de Alzheimer/genética , Animais , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/genética
2.
Mamm Genome ; 27(7-8): 407-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27143113

RESUMO

Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/genética , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/fisiopatologia , Barreira Hematoencefálica/metabolismo , Encéfalo/fisiopatologia , Sistema Nervoso Central , Plexo Corióideo/fisiopatologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Homeostase , Humanos , Degeneração Neural
3.
Mol Neurodegener ; 10: 30, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179372

RESUMO

BACKGROUND: The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the ß-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear. Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs. RESULTS: Three patient-specific CLU mutations in the ß-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines. CONCLUSIONS: Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the α- and ß-chain of CLU.


Assuntos
Doença de Alzheimer/genética , Clusterina/metabolismo , Mutação de Sentido Incorreto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/fisiopatologia , Substituição de Aminoácidos , Bélgica/epidemiologia , Transporte Biológico , Clusterina/genética , Cistina/química , Dimerização , Retículo Endoplasmático/metabolismo , Éxons/genética , Feminino , Mutação da Fase de Leitura , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Transdução Genética , Transfecção
4.
Mol Oncol ; 9(6): 1218-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25771305

RESUMO

BACKGROUND: Patients with Estrogen Receptor α-positive (ER+) Inflammatory Breast Cancer (IBC) are less responsive to endocrine therapy compared with ER+ non-IBC (nIBC) patients. The study of ER+ IBC samples might reveal biomarkers for endocrine resistant breast cancer. MATERIALS & METHODS: Gene expression profiles of ER+ samples from 201 patients were explored for genes that discriminated between IBC and nIBC. Classifier genes were applied onto clinically annotated expression data from 947 patients with ER+ breast cancer and validated with RT-qPCR for 231 patients treated with first-line tamoxifen. Relationships with metastasis-free survival (MFS) and progression-free survival (PFS) following adjuvant and first-line endocrine treatment, respectively, were investigated using Cox regression analysis. RESULTS: A metagene of six genes including the genes encoding for 4-aminobutyrate aminotransferase (ABAT) and Stanniocalcin-2 (STC2) were identified to distinguish 22 ER+ IBC from 43 ER+ nIBC patients and remained discriminatory in an independent series of 136 patients. The metagene and two genes were not prognostic in 517 (neo)adjuvant untreated lymph node-negative ER+ nIBC breast cancer patients. Only ABAT was related to outcome in 250 patients treated with adjuvant tamoxifen. Three independent series of in total 411 patients with advanced disease showed increased metagene scores and decreased expression of ABAT and STC2 to be correlated with poor first-line endocrine therapy outcome. The biomarkers remained predictive for first-line tamoxifen treatment outcome in multivariate analysis including traditional factors or published signatures. In an exploratory analysis, ABAT and STC2 protein expression levels had no relation with PFS after first-line tamoxifen. CONCLUSIONS: This study utilized ER+ IBC to identify a metagene including ABAT and STC2 as predictive biomarkers for endocrine therapy resistance.


Assuntos
4-Aminobutirato Transaminase/biossíntese , Antineoplásicos Hormonais/administração & dosagem , Biomarcadores Tumorais/biossíntese , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/biossíntese , Neoplasias Inflamatórias Mamárias , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas de Neoplasias/biossíntese , Tamoxifeno/administração & dosagem , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/mortalidade , Neoplasias Inflamatórias Mamárias/patologia , Taxa de Sobrevida
5.
Neurobiol Aging ; 32(9): 1579-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20015575

RESUMO

The varied morphological and biochemical forms in which amyloid deposits in brain of Alzheimer's disease (AD) patients are complex and their mechanisms of formation are not completely understood. Here we investigated the ability of fractal dimension (FD) to differentiate between the textures of commonly observed amyloid plaques in sporadic and familial AD patients and aged-control individuals as well as in transgenic mouse models of amyloidosis. Studying more than 6000 amyloid plaques immunostained for total Aß (Aßt), Aß40 or Aß42, we show here that Aß40 FD could efficiently differentiate between (i) AD patients and aged-control individuals (P<0.001); (ii) sporadic and familial AD due to presenilin-1 or APP (A692G) mutations (P<0.001); and (iii) three transgenic mouse models of different genotypes (P<0.001). Furthermore, while diffuse and dense-core plaques present in humans and transgenic mice had comparable FDs, both Aßt and Aß42 FD could also differentiate diffuse plaques from other plaque types in both species (P<0.001). Our data suggest that plaque FD could be a valuable tool for objective, computer-oriented AD diagnosis as well as for genotype-phenotype correlations of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Diagnóstico por Computador/métodos , Fractais , Processamento de Imagem Assistida por Computador/métodos , Placa Amiloide/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA