Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nucleic Acid Ther ; 33(4): 248-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389884

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Owing to a lack of effective treatments, patients with metastatic disease have a median survival time of 6-12 months. We recently demonstrated that the Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA (SAMMSON) is essential for UM cell survival and that antisense oligonucleotide (ASO)-mediated silencing of SAMMSON impaired cell viability and tumor growth in vitro and in vivo. By screening a library of 2911 clinical stage compounds, we identified the mammalian target of rapamycin (mTOR) inhibitor GDC-0349 to synergize with SAMMSON inhibition in UM. Mechanistic studies revealed that mTOR inhibition enhanced uptake and reduced lysosomal accumulation of lipid complexed SAMMSON ASOs, improving SAMMSON knockdown and further decreasing UM cell viability. We found mTOR inhibition to also enhance target knockdown in other cancer cell lines as well as normal cells when combined with lipid nanoparticle complexed or encapsulated ASOs or small interfering RNAs (siRNAs). Our results are relevant to nucleic acid treatment in general and highlight the potential of mTOR inhibition to enhance ASO and siRNA-mediated target knockdown.


Assuntos
Melanoma , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/uso terapêutico
2.
Oncogene ; 41(1): 15-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508176

RESUMO

Long non-coding RNAs (lncRNAs) can exhibit cell-type and cancer-type specific expression profiles, making them highly attractive as therapeutic targets. Pan-cancer RNA sequencing data revealed broad expression of the SAMMSON lncRNA in uveal melanoma (UM), the most common primary intraocular malignancy in adults. Currently, there are no effective treatments for UM patients with metastatic disease, resulting in a median survival time of 6-12 months. We aimed to investigate the therapeutic potential of SAMMSON inhibition in UM. Antisense oligonucleotide (ASO)-mediated SAMMSON inhibition impaired the growth and viability of a genetically diverse panel of uveal melanoma cell lines. These effects were accompanied by an induction of apoptosis and were recapitulated in two uveal melanoma patient derived xenograft (PDX) models through subcutaneous ASO delivery. SAMMSON pulldown revealed several candidate interaction partners, including various proteins involved in mitochondrial translation. Consequently, inhibition of SAMMSON impaired global, mitochondrial and cytosolic protein translation levels and mitochondrial function in uveal melanoma cells. The present study demonstrates that SAMMSON expression is essential for uveal melanoma cell survival. ASO-mediated silencing of SAMMSON may provide an effective treatment strategy to treat primary and metastatic uveal melanoma patients.


Assuntos
Sobrevivência Celular/genética , Melanoma/mortalidade , RNA Longo não Codificante/metabolismo , Neoplasias Uveais/mortalidade , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
4.
Acta Myol ; 39(2): 94-97, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32904881

RESUMO

The mitochondrial DNA depletion syndrome (MDDS) is characterized by extensive phenotypic variability and is due to nuclear gene mutations resulting in reduced mtDNA copy number. Thymidine kinase 2 (TK2) mutations are well known to be associated with MDDS. Few severely affected cases carrying the c.416C > T mutation in TK2 gene have been described so far. We describe the case of a 14months boy with the aforementioned TK2 gene pathogenic mutation at a homozygous state, presenting with a mild clinical phenotype. In addition to severe mitochondrial pathology on muscle biopsy, there was also histochemical evidence of adenylate deaminase deficiency. Overall, this report serves to further expand the clinical spectrum of TK2 mutations associated with MDDS.


Assuntos
Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Timidina Quinase/genética , Pré-Escolar , Humanos , Lactente , Masculino , Doenças Mitocondriais/complicações , Doenças Musculares/complicações
5.
Muscle Nerve ; 61(2): 173-181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31749205

RESUMO

INTRODUCTION: Small fiber neuropathies (SFN) are associated with a reduction in quality of life. In adults, epidermal nerve fiber density (END) analysis is recommended for the diagnosis of SFN. In children, END assessment is not often performed. We analyzed small nerve fiber innervation to elucidate the potential diagnostic role of skin biopsies in young patients with pain. METHODS: Epidermal nerve fiber density and sudomotor neurite density (SND) were assessed in skin biopsies from 26 patients aged 7 to 20 years (15 female patients) with unexplained chronic pain. The results were compared with clinical data. RESULTS: Epidermal nerve fiber density was abnormal in 50% and borderline in 35% of patients. An underlying medical condition was found in 42% of patients, including metabolic, autoimmune, and genetic disorders. DISCUSSION: Reduction of epidermal nerve fibers can be associated with treatable conditions. Therefore, the analysis of END in children with pain may help to uncover a possible cause and guide potential treatment options.


Assuntos
Dor Crônica/diagnóstico , Dor Crônica/patologia , Fibras Nervosas/patologia , Pele/patologia , Neuropatia de Pequenas Fibras/patologia , Adolescente , Biópsia , Criança , Epiderme/inervação , Epiderme/patologia , Feminino , Humanos , Masculino , Neuralgia/diagnóstico , Neuritos/patologia , Medição da Dor , Glândulas Sudoríparas/inervação , Glândulas Sudoríparas/patologia , Adulto Jovem
6.
Clin Genet ; 97(3): 426-436, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721179

RESUMO

Biallelic MFSD8 variants are an established cause of severe late-infantile subtype of neuronal ceroid lipofuscinosis (v-LINCL), a severe lysosomal storage disorder, but have also been associated with nonsyndromic adult-onset maculopathy. Here, we functionally characterized two novel MFSD8 variants found in a child with juvenile isolated maculopathy, in order to establish a refined prognosis. ABCA4 locus resequencing was followed by the analysis of other inherited retinal disease genes by whole exome sequencing (WES). Minigene assays and cDNA sequencing were used to assess the effect of a novel MFSD8 splice variant. MFSD8 expression was quantified with qPCR and overexpression studies were analyzed by immunoblotting. Transmission electron microscopy (TEM) was performed on a skin biopsy and ophthalmological and neurological re-examinations were conducted. WES revealed two novel MFSD8 variants: c.[590del];[439+3A>C] p.[Gly197Valfs*2];[Ile67Glufs*3]. Characterization of the c.439+3A>C variant via splice assays showed exon-skipping (p.Ile67Glufs*3), while overexpression studies of the corresponding protein indicated expression of a truncated polypeptide. In addition, a significantly reduced MFSD8 RNA expression was noted in patient's lymphocytes. TEM of a skin biopsy revealed typical v-LINCL lipopigment inclusions while neurological imaging of the proband displayed subtle cerebellar atrophy. Functional characterization demonstrated the pathogenicity of two novel MFSD8 variants, found in a child with an initial diagnosis of juvenile isolated maculopathy but likely evolving to v-LINCL with a protracted disease course. Our study allowed a refined neurological prognosis in the proband and expands the natural history of MFSD8-associated disease.


Assuntos
Degeneração Macular/genética , Proteínas de Membrana Transportadoras/genética , Lipofuscinoses Ceroides Neuronais/genética , Criança , Feminino , Variação Genética , Homozigoto , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/fisiopatologia , Microscopia Eletrônica de Transmissão , Mutação , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Retina/diagnóstico por imagem , Retina/fisiopatologia , Sequenciamento do Exoma
7.
J Synchrotron Radiat ; 27(Pt 1): 185-198, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868751

RESUMO

Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by an increase in intracytoplasmic iron concentration. Here the nanoscale iron distribution within single fibroblasts from FRDA patients was investigated using synchrotron-radiation-based nanoscopic X-ray fluorescence and X-ray in-line holography at the ID16A nano-imaging beamline of the ESRF. This unique probe was deployed to uncover the iron cellular two-dimensional architecture of freeze-dried FRDA fibroblasts. An unsurpassed absolute detection capability of 180 iron atoms within a 30 nm × 50 nm nanoscopic X-ray beam footprint was obtained using state-of-the-art X-ray focusing optics and a large-solid-angle detection system. Various micrometre-sized iron-rich organelles could be revealed for the first time, tentatively identified as endoplasmic reticulum, mitochondria and lysosomes. Also a multitude of nanoscopic iron hot-spots were observed in the cytosol, interpreted as chaperoned iron within the fibroblast's labile iron pool. These observations enable new hypotheses on the storage and trafficking of iron in the cell and ultimately to a better understanding of iron-storage diseases such as Friedreich's ataxia.


Assuntos
Fibroblastos/química , Ataxia de Friedreich/patologia , Holografia/métodos , Ferro/análise , Análise de Célula Única/métodos , Espectrometria por Raios X/métodos , Carbono , Citoplasma/química , Fibroblastos/ultraestrutura , Liofilização , Humanos , Nanoestruturas , Organelas/química , Organelas/ultraestrutura , Análise de Célula Única/instrumentação , Síncrotrons , Fixação de Tecidos/métodos
8.
Eur J Paediatr Neurol ; 23(1): 222-227, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30528093

RESUMO

BACKGROUND: Arterial ischemic stroke is rare in childhood. Often, the diagnosis is made after considerable delay. A thorough workup to pinpoint the underlying etiology is necessary, as a correct diagnosis is the determining factor in treatment decision. In case of primary angiitis of the central nervous system, treatment with corticosteroids and immunosuppressive agents is indicated. CASE STUDY: We described an eleven-year-old boy who presented at the age of six years with left hemiparesis and hemianopia. Cerebral imaging showed acute ischemia in the right posterior cerebral artery territory. Extensive workup was negative. In the following eight months, he had recurrent strokes on three separate occasions due to progressive arteriopathy involving multiple large- and medium-sized vessels. A presumed diagnosis of primary angiitis of the central nervous system was made. Pulse intravenous methylprednisolone therapy was started followed by oral prednisolone. After the fourth stroke, a six-month treatment with cyclophosphamide was given which was followed by maintenance treatment with azathioprine. Shortly after cessation of corticosteroids and cyclophosphamide the subject relapsed. Cyclophosphamide was restarted in combination with corticosteroids and subsequently replaced by mycophenolate mofetil. Under mycophenolate mofetil maintenance treatment combined with low-dose corticosteroids, the patient achieved disease control with a relapse-free period of more than four years. CONCLUSION: A guideline for current treatment of relapsing central nervous system angiitis in childhood is missing in the literature. We describe a subject with multiple relapses despite treatment with corticosteroids and immunosuppressive agents, and stabilization of his clinical condition and of the radiological signs under mycophenolate mofetil treatment.


Assuntos
Imunossupressores/uso terapêutico , Ácido Micofenólico/uso terapêutico , Vasculite do Sistema Nervoso Central/complicações , Vasculite do Sistema Nervoso Central/tratamento farmacológico , Azatioprina/uso terapêutico , Criança , Ciclofosfamida/uso terapêutico , Quimioterapia Combinada , Humanos , Masculino , Prednisolona/uso terapêutico , Recidiva , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
9.
Appl Spectrosc ; 72(5): 715-724, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29336589

RESUMO

Unexplained abnormal fatigue is characterized by chronic fatigue persisting for at least six months and not sufficiently explained by any recognized medical condition. In this pilot study, twelve individuals with abnormal fatigue remaining unexplained after thorough screening were investigated using a near-infrared (NIR) spectroscopy handgrip test. Four of them were found to have an abnormal oxygen extraction pattern similar to participants with documented mitochondrial myopathy. In three of the four individuals, diverse mitochondrial abnormalities were documented by spectrophotometric, immunocytological, fluorescent, and morphological analyses performed in skeletal muscle and in cultured skin fibroblasts. Three of the four participants with decreased muscular oxygen extraction were each shown to harbor a different homoplasmic pathogenic mitochondrial DNA point mutation (m.961T > C, m.1555A > G, m.14484T > C). In the fourth participant, the presence of multiple large mitochondrial DNA deletions was suspected in muscle tissue. In contrast, none of the eight abnormally fatigued participants with normal NIR spectroscopy results harbored either a pathogenic mitochondrial DNA point mutation or large deletions ( P < 0.001). This pilot study shows that NIR spectroscopy may serve as a noninvasive screening tool to delineate a subgroup (of participants) with mitochondrial dysfunction among the large group of individuals with unexplained abnormal fatigue.


Assuntos
DNA Mitocondrial/análise , Síndrome de Fadiga Crônica/fisiopatologia , Doenças Mitocondriais/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Estudos de Casos e Controles , Feminino , Força da Mão , Humanos , Masculino , Microscopia , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/fisiologia , Músculo Esquelético/citologia , Oxiemoglobinas/análise , Projetos Piloto , Pele/citologia
10.
Nutrients ; 9(9)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28906460

RESUMO

In human cells, mitochondria provide the largest part of cellular energy in the form of adenosine triphosphate generated by the process of oxidative phosphorylation (OXPHOS). Impaired OXPHOS activity leads to a heterogeneous group of inherited diseases for which therapeutic options today remain very limited. Potential innovative strategies aim to ameliorate mitochondrial function by increasing the total mitochondrial load of tissues and/or to scavenge the excess of reactive oxygen species generated by OXPHOS malfunctioning. In this respect, resveratrol, a compound that conveniently combines mitogenetic with antioxidant activities and, as a bonus, possesses anti-apoptotic properties, has come forward as a promising nutraceutical. We review the scientific evidence gathered so far through experiments in both in vitro and in vivo systems, evaluating the therapeutic effect that resveratrol is expected to generate in mitochondrial patients. The obtained results are encouraging, but clearly show that achieving normalization of OXPHOS function with this strategy alone could prove to be an unattainable goal.


Assuntos
Suplementos Nutricionais , Doenças Mitocondriais/tratamento farmacológico , Estilbenos/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol
11.
Mitochondrion ; 27: 32-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26855408

RESUMO

Megaconial congenital muscular dystrophy is a disease caused by pathogenic mutations in the gene encoding choline kinase beta (CHKB). Microscopically, the disease is hallmarked by the presence of enlarged mitochondria at the periphery of skeletal muscle fibres leaving the centre devoid of mitochondria. Clinical characteristics are delayed motor development, intellectual disability and dilated cardiomyopathy in half of reported cases. This study describes a patient presenting with the cardinal clinical features, in whom a homozygous nonsense mutation (c.248_249insT; p.Arg84Profs*209) was identified in CHKB and who was treated by heart transplantation. Microscopic evaluation of skeletal and heart muscles typically showed enlarged mitochondria. Spectrophotometric evaluation in both tissues revealed a mild decrease of all OXPHOS complexes. Using BN-PAGE analysis followed by activity staining subcomplexes of complex V were detected in both tissues, indicating incomplete complex V assembly. Mitochondrial DNA content was not depleted in analysed tissues. This is the first report describing the microscopic and biochemical abnormalities in the heart from an affected patient. A likely hypothesis is that the biochemical findings are caused by an abnormal lipid profile in the inner mitochondrial membrane resulting from a defective choline kinase B activity.


Assuntos
Colina Quinase/genética , Códon sem Sentido , Membranas Mitocondriais/fisiologia , Miopatias Mitocondriais/patologia , Distrofias Musculares/patologia , Miocárdio/patologia , Adenosina Trifosfatases/análise , Proteínas de Transporte/análise , Criança , Transplante de Coração , Humanos , Masculino , Proteínas de Membrana/análise , Microscopia , Mitocôndrias/patologia , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/terapia , ATPases Mitocondriais Próton-Translocadoras , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/terapia , Fosforilação Oxidativa
12.
J Inherit Metab Dis ; 38(6): 1147-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25971455

RESUMO

Leukodystrophies are a heterogeneous group of severe genetic neurodegenerative disorders. A multiple mitochondrial dysfunctions syndrome was found in an infant presenting with a progressive leukoencephalopathy. Homozygosity mapping, whole exome sequencing, and functional studies were used to define the underlying molecular defect. Respiratory chain studies in skeletal muscle isolated from the proband revealed a combined deficiency of complexes I and II. In addition, western blotting indicated lack of protein lipoylation. The combination of these findings was suggestive for a defect in the iron-sulfur (Fe/S) protein assembly pathway. SNP array identified loss of heterozygosity in large chromosomal regions, covering the NFU1 and BOLA3, and the IBA57 and ABCB10 candidate genes, in 2p15-p11.2 and 1q31.1-q42.13, respectively. A homozygous c.436C > T (p.Arg146Trp) variant was detected in IBA57 using whole exome sequencing. Complementation studies in a HeLa cell line depleted for IBA57 showed that the mutant protein with the semi-conservative amino acid exchange was unable to restore the biochemical phenotype indicating a loss-of-function mutation of IBA57. In conclusion, defects in the Fe/S protein assembly gene IBA57 can cause autosomal recessive neurodegeneration associated with progressive leukodystrophy and fatal outcome at young age. In the affected patient, the biochemical phenotype was characterized by a defect in the respiratory chain complexes I and II and a decrease in mitochondrial protein lipoylation, both resulting from impaired assembly of Fe/S clusters.


Assuntos
Proteínas de Transporte/genética , Proteínas Ferro-Enxofre/genética , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Doenças Mitocondriais/diagnóstico , Complexo I de Transporte de Elétrons/genética , Evolução Fatal , Heterozigoto , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Mutação , Fenótipo
13.
Biochim Biophys Acta ; 1853(2): 285-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450972

RESUMO

The tight interrelationship between peroxisomes and mitochondria is illustrated by their cooperation in lipid metabolism, antiviral innate immunity and shared use of proteins executing organellar fission. In addition, we previously reported that disruption of peroxisome biogenesis in hepatocytes severely impacts on mitochondrial integrity, primarily damaging the inner membrane. Here we investigated the molecular impairments of the dysfunctional mitochondria in hepatocyte selective Pex5 knockout mice. First, by using blue native electrophoresis and in-gel activity stainings we showed that the respiratory complexes were differentially affected with reduction of complexes I and III and incomplete assembly of complex V, whereas complexes II and IV were normally active. This resulted in impaired oxygen consumption in cultured Pex5(-/-) hepatocytes. Second, mitochondrial DNA was depleted causing an imbalance in the expression of mitochondrial- and nuclear-encoded subunits of the respiratory chain complexes. Third, mitochondrial membranes showed increased permeability and fluidity despite reduced content of the polyunsaturated fatty acid docosahexaenoic acid. Fourth, the affected mitochondria in peroxisome deficient hepatocytes displayed increased oxidative stress. Acute deletion of PEX5 in vivo using adeno-Cre virus phenocopied these effects, indicating that mitochondrial perturbations closely follow the loss of functional peroxisomes in time. Likely to compensate for the functional impairments, the volume of the mitochondrial compartment was increased several folds. This was not driven by PGC-1α but mediated by activation of PPARα, possibly through c-myc overexpression. In conclusion, loss of peroxisomal metabolism in hepatocytes perturbs the mitochondrial inner membrane, depletes mitochondrial DNA and causes mitochondrial biogenesis independent of PGC-1α.


Assuntos
DNA Mitocondrial/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Compartimento Celular , Proliferação de Células , Respiração Celular , Transporte de Elétrons , Deleção de Genes , Hepatócitos/ultraestrutura , Lipídeos/química , Fluidez de Membrana , Camundongos Knockout , Mitocôndrias/ultraestrutura , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptor 1 de Sinal de Orientação para Peroxissomos , Subunidades Proteicas/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/metabolismo
14.
Anesthesiology ; 122(2): 343-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25296107

RESUMO

BACKGROUND: Propofol is a short-acting intravenous anesthetic agent. In rare conditions, a life-threatening complication known as propofol infusion syndrome can occur. The pathophysiologic mechanism is still unknown. Some studies suggested that propofol acts as uncoupling agent, others suggested that it inhibits complex I or complex IV, or causes increased oxidation of cytochrome c and cytochrome aa3, or inhibits mitochondrial fatty acid metabolism. Although the exact site of interaction is not known, most hypotheses point to the direction of the mitochondria. METHODS: Eight rats were ventilated and sedated with propofol up to 20 h. Sequential biopsy specimens were taken from liver and skeletal muscle and used for determination of respiratory chain activities and propofol concentration. Activities were also measured in skeletal muscle from a patient who died of propofol infusion syndrome. RESULTS: In rats, authors detected a decrease in complex II+III activity starting at low tissue concentration of propofol (20 to 25 µM), further declining at higher concentrations. Before starting anesthesia, the complex II+III/citrate synthase activity ratio in liver was 0.46 (0.25) and in skeletal muscle 0.23 (0.05) (mean [SD]). After 20 h of anesthesia, the ratios declined to 0.17 (0.03) and 0.12 (0.02), respectively. When measured individually, the activities of complexes II and III remained normal. Skeletal muscle from one patient taken in the acute phase of propofol infusion syndrome also shows a selective decrease in complex II+III activity (z-score: -2.96). CONCLUSION: Propofol impedes the electron flow through the respiratory chain and coenzyme Q is the main site of interaction with propofol.


Assuntos
Anestésicos Intravenosos/toxicidade , Propofol/toxicidade , Ubiquinona/metabolismo , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Respiração Artificial , Síndrome
15.
Mitochondrion ; 18: 12-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25159128

RESUMO

To investigate the applicability of preimplantation genetic diagnosis (PGD), we used trophectoderm (TE) biopsy to determine the mutation load in a 35-year-old female with mitochondrial encephalopathy, lactic acidosis and stroke-like syndrome (MELAS). Transfer of a mutation-free blastocyst gave birth to a healthy boy with undetectable mutation in any of the analyzed tissues. We found strong correlation among TE cells (r=0.90) within blastocysts and also between cytoplasmic fragments and TE (r=0.95). This is the first case of mutation-free baby born from a MELAS patient after TE biopsy and supports the applicability of blastocyst PGD for patients with mtDNA disorders to establish healthy offspring.


Assuntos
Síndrome MELAS/diagnóstico , Síndrome MELAS/prevenção & controle , Complicações na Gravidez , Diagnóstico Pré-Implantação , Adulto , Biópsia , Transferência Embrionária , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez
16.
Mitochondrion ; 17: 101-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24956508

RESUMO

Cytochrome c oxidase (COX) deficiency is one of the most common respiratory chain deficiencies. A woman was presented at the age of 18y with acute loss of consciousness, non-convulsive status epilepticus, slow neurological deterioration, transient cortical blindness, exercise intolerance, muscle weakness, hearing loss, cataract and cognitive decline. Muscle biopsy revealed ragged-red fibers, COX negative fibers and a significant decreased activity of complex IV in a homogenate. Using next generation massive parallel sequencing of the mtDNA, a novel heteroplasmic mutation was identified in MTCO1, m.7402delC, causing frameshift and a premature termination codon. Single fiber PCR showed co-segregation of high mutant load in COX negative fibers. Mutation in mitochondrially encoded complex IV subunits should be considered in mitochondrial encephalomyopathies and COX negative fibers after the common mtDNA mutations have been excluded.


Assuntos
Deficiência de Citocromo-c Oxidase , Complexo IV da Cadeia de Transporte de Elétrons/genética , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Mutação , Adolescente , Biópsia , Códon sem Sentido , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Mutação da Fase de Leitura , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Encefalomiopatias Mitocondriais/patologia , Músculos/patologia
17.
Eur J Paediatr Neurol ; 18(3): 439-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24461257

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease of the presynaptic neuromuscular junction, typically occurring in adults as a paraneoplastic syndrome. Only rare cases have been reported in childhood. In most childhood cases, malignancies have not been detected but a propensity to autoimmune disease was noticed. Nevertheless, little is known about genetic factors that may contribute to the susceptibility of an individual to develop LEMS. We report on a 13-year-old girl, known with the Xp11.22-p11.23 duplication syndrome, who presented with severe non-paraneoplastic LEMS. The potential role of this microduplication syndrome in the development of LEMS is explored. Previous literature review of twelve Xp11.2 duplication syndrome patients showed that three of them suffered from various autoimmune diseases. The common duplicated region in those three patients and the presented case comprises 12 disease-associated genes including the FOXP3 (Forkhead Box P3) and WAS (Wiskott-Aldrich syndrome) gene, both implicated in immune function. However, it is unclear whether increased gene dosage of one or both of these genes can cause susceptibility to autoimmune diseases. In conclusion, the presented case emphasizes that autoimmune disease is a recurrent feature of the Xp11.2 duplication syndrome, which should be considered in the follow-up of these patients. The exact mechanism underlying this autoimmune propensity remains to be elucidated.


Assuntos
Doenças Autoimunes/genética , Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença/genética , Síndrome Miastênica de Lambert-Eaton/genética , Mutação/genética , Adolescente , Doenças Autoimunes/diagnóstico , Transtornos Cromossômicos/complicações , Transtornos Cromossômicos/diagnóstico , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Testes Genéticos , Humanos , Síndrome Miastênica de Lambert-Eaton/complicações , Síndrome Miastênica de Lambert-Eaton/diagnóstico
18.
J Child Neurol ; 29(8): NP18-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23864591

RESUMO

Leber hereditary optic neuropathy is a well-known mitochondrial disorder that leads to bilateral subacute visual failure. Although visual impairment is often the sole clinical feature, additional and severe neurologic abnormalities also have been documented for this disease. We report on a 13-year-old boy who has presented with severe visual failure since early childhood in a context of prematurity. In the first years of his life, clinical features included delayed psychomotor development and ataxia. The clinical presentation, which was initially attributed to prematurity, worsened thereafter, and the child developed acute neurologic degradation with the typical radiological findings of Leigh syndrome. The mitochondrial DNA point mutation 11778G>A was identified in the ND4 gene. The probable influence of environmental background on clinical expression of Leber optic neuropathy, particularly those of prematurity and oxygen therapy, is discussed in our manuscript.


Assuntos
Senilidade Prematura/genética , DNA Mitocondrial/genética , Amaurose Congênita de Leber/genética , Mutação/genética , Adolescente , Senilidade Prematura/complicações , Encéfalo/patologia , Humanos , Amaurose Congênita de Leber/complicações , Imageamento por Ressonância Magnética , Masculino
19.
Pediatrics ; 132(3): e788-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23940246

RESUMO

Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare and complex pediatric syndrome, essentially caused by dysfunction of 3 vital systems regulating endocrine, respiratory, and autonomic nervous system functioning. The clinical spectrum of ROHHAD is broad, but sleep/wake disorders have received relatively little attention so far, although the central hypothalamic dysfunction would make the occurrence of sleep symptoms likely. In this case report, we expand the phenotype of ROHHAD with a number of striking sleep symptoms that together can be classified as a secondary form of narcolepsy. We present a 7-year-old girl with ROHHAD who displayed the classic features of narcolepsy with cataplexy: excessive daytime sleepiness with daytime naps, visual hallucinations, and partial cataplexy reflected in intermittent loss of facial muscle tone. Nocturnal polysomnography revealed sleep fragmentation and a sleep-onset REM period characteristic for narcolepsy. The diagnosis was confirmed by showing an absence of hypocretin-1 in the cerebrospinal fluid. We discuss potential pathophysiological implications as well as symptomatic treatment options.


Assuntos
Doenças Hipotalâmicas/diagnóstico , Hipoventilação/diagnóstico , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Narcolepsia/diagnóstico , Neuropeptídeos/deficiência , Obesidade/diagnóstico , Criança , Diagnóstico Diferencial , Evolução Fatal , Feminino , Parada Cardíaca/etiologia , Humanos , Doenças Hipotalâmicas/líquido cefalorraquidiano , Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Neuropeptídeos/líquido cefalorraquidiano , Obesidade/líquido cefalorraquidiano , Orexinas , Polissonografia , Puberdade Precoce/líquido cefalorraquidiano , Puberdade Precoce/diagnóstico , Apneia do Sono Tipo Central/líquido cefalorraquidiano , Apneia do Sono Tipo Central/diagnóstico , Transtornos do Sono-Vigília/líquido cefalorraquidiano , Transtornos do Sono-Vigília/diagnóstico
20.
Eur J Paediatr Neurol ; 17(6): 625-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23816342

RESUMO

BACKGROUND: Primary coenzyme Q10 (CoQ10) deficiencies are heterogeneous autosomal recessive disorders. CoQ2 mutations have been identified only rarely in patients. All affected individuals presented with nephrotic syndrome in the first year of life. METHODS: An infant is studied with myoclonic seizures and hypertrophic cardiomyopathy in the first months of life and developed a nephrotic syndrome in a later stage. RESULTS: At three weeks of age, the index patient developed myoclonic seizures. In addition, he had hypertrophic cardiomyopathy and increased CSF lactate. A skeletal muscle biopsy performed at two months of age disclosed normal activities of the oxidative phosphorylation complexes. The child was supplemented with CoQ10 (5 mg/kg/day). At the age of four months, brain MR images showed bilateral increased signal intensities in putamen and cerebral cortex. After that age, he developed massive proteinuria. The daily dose of CoQ10 was increased to 30 mg/kg. Renal biopsy showed focal segmental glomerulosclerosis. Biochemical analyses of a kidney biopsy sample revealed a severely decreased activity of succinate cytochrome c reductase [complex II + III] suggesting ubiquinone depletion. Incorporation of labelled precursors necessary for CoQ10 synthesis was significantly decreased in cultured skin fibroblasts. His condition deteriorated and he died at the age of five months. A novel homozygous mutation c.326G > A (p.Ser109Asn) was found in COQ2. CONCLUSIONS: In contrast to previously reported patients with CoQ2 the proband presented with early myoclonic epilepsy, hypertrophic cardiomyopathy and only in a later stage developed a nephrotic syndrome. The phenotype of this patient enlarges the phenotypical spectrum of the multisystem infantile variant.


Assuntos
Alquil e Aril Transferases/genética , Ataxia/genética , Cardiomiopatia Hipertrófica/genética , Epilepsias Mioclônicas/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação/genética , Síndrome Nefrótica/genética , Ubiquinona/deficiência , Ataxia/complicações , Ataxia/patologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Imagem de Difusão por Ressonância Magnética , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/patologia , Testes Genéticos , Humanos , Lactente , Rim/patologia , Rim/ultraestrutura , Espectroscopia de Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Debilidade Muscular/complicações , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/patologia , Ubiquinona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA