Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(5): 90, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554147

RESUMO

Clinically approved head and neck squamous cell carcinoma (HNSCC) immunotherapies manipulate the immune checkpoint blockade (ICB) axis but have had limited success outside of recurrent/metastatic disease. Interleukin-7 (IL7) has been shown to be essential for effector T-cell survival, activation, and proliferation. Here, we show that IL7 in combination with radiotherapy (RT) is effective in activating CD8 + T-cells for reducing tumor growth. Our studies were conducted using both human papillomavirus related and unrelated orthotopic HNSCC murine models. Immune populations from the tumor, draining lymph nodes, and blood were compared between treatment groups and controls using flow cytometry, proteomics, immunofluorescence staining, and RNA sequencing. Treatment with RT and IL7 (RT + IL7) resulted in significant tumor growth reduction, high CD8 T-cell tumor infiltration, and increased proliferation of T-cell progenitors in the bone marrow. IL7 also expanded a memory-like subpopulation of CD8 T-cells. These results indicate that IL7 in combination with RT can serve as an effective immunotherapy strategy outside of the conventional ICB axis to drive the antitumor activity of CD8 T-cells.


Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-7 , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Células T de Memória , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/radioterapia , Microambiente Tumoral
2.
Med ; 5(3): 254-270.e8, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38423011

RESUMO

BACKGROUND: Perineural invasion (PNI) and nerve density within the tumor microenvironment (TME) have long been associated with worse outcomes in head and neck squamous cell carcinoma (HNSCC). This prompted an investigation into how nerves within the tumor microenvironment affect the adaptive immune system and tumor growth. METHODS: We used RNA sequencing analysis of human tumor tissue from a recent HNSCC clinical trial, proteomics of human nerves from HNSCC patients, and syngeneic orthotopic murine models of HPV-unrelated HNSCC to investigate how sensory nerves modulate the adaptive immune system. FINDINGS: Calcitonin gene-related peptide (CGRP) directly inhibited CD8 T cell activity in vitro, and blocking sensory nerve function surgically, pharmacologically, or genetically increased CD8 and CD4 T cell activity in vivo. CONCLUSIONS: Our data support sensory nerves playing a role in accelerating tumor growth by directly acting on the adaptive immune system to decrease Th1 CD4 T cells and activated CD8 T cells in the TME. These data support further investigation into the role of sensory nerves in the TME of HNSCC and points toward the possible treatment efficacy of blocking sensory nerve function or specifically inhibiting CGRP release or activity within the TME to improve outcomes. FUNDING: 1R01DE028282-01, 1R01DE028529-01, 1P50CA261605-01 (to S.D.K.), 1R01CA284651-01 (to S.D.K.), and F31 DE029997 (to L.B.D.).


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral
3.
Clin Cancer Res ; 30(9): 1916-1933, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363297

RESUMO

PURPOSE: Head and neck cancer (HNC) improvements are stagnant, even with advances in immunotherapy. Our previous clinical trial data show that altered fatty acid (FA) metabolism correlates with outcome. We hypothesized that pharmacologic and dietary modulation of FA catabolism will affect therapeutic efficacy. EXPERIMENTAL DESIGN: We performed in vivo and in vitro experiments using PPARα agonism with fenofibrate (FF) or high oleic acid diets (OAD) with radiotherapy, generating metabolomic, proteomic, stable isotope tracing, extracellular flux analysis, and flow-cytometric data to investigate these alterations. RESULTS: FF improved antitumor efficacy of high dose per fraction radiotherapy in HNC murine models, whereas the OAD reversed this effect. FF-treated mice on the control diet had evidence of increased FA catabolism. Stable isotope tracing showed less glycolytic utilization by ex vivo CD8+ T cells. Improved efficacy correlated with intratumoral alterations in eicosanoid metabolism and downregulated mTOR and CD36. CONCLUSIONS: Metabolic intervention with increased FA catabolism improves the efficacy of HNC therapy and enhances antitumoral immune response.


Assuntos
Neoplasias de Cabeça e Pescoço , Ácido Oleico , PPAR alfa , Animais , PPAR alfa/agonistas , Camundongos , Ácido Oleico/farmacologia , Humanos , Neoplasias de Cabeça e Pescoço/imunologia , Fenofibrato/farmacologia , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA