Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 236: 113794, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34147023

RESUMO

Intermittent drinking water supply affects the health of over 300 million people globally. In Mozambique, it is largely practiced in cities and small towns. This results in frequent microbial contamination of the supplied drinking water posing a health risk to consumers. In Moamba, a small town in Southern Mozambique with 2,500 water connections, the impact of changes in operational strategies, namely increased chlorine dosage, increased supply duration and first-flush, on the microbial water quality was studied to determine best practices. To that aim, water quality monitoring was enhanced to provide sufficient data on the microbial contamination from 452 samples under the different strategies. The water at the outlet of the water treatment plant during all strategies was free of E. coli complying to the national standards. However, E. coli could be detected at household level. By increasing the chlorine dosage, the number of samples that showed E. coli absence increased at the two sampling locations in the distribution network: in Cimento from 72% to 83% and in Matadouro from 52% to 86%. Modifying the number and duration of supply cycles showed a different impact on the water quality at both locations in the distribution network. A positive effect was shown in Cimento, where the mean concentrations decreased slightly from 0.54 to 0.23 CFU/100 mL and 16.7 to 7.3 CFU/100 mL for E. coli and total coliforms respectively. The percentage of samples positive for bacteria was, however, similar. In contrast, a negative effect was shown in Matadouro where the percentage of positive samples increased and the mean bacterial concentrations increased slightly: E. coli from 0.9 to 1.5 CFU/100 mL and total coliforms 17.6 to 23.0 CFU/100 mL. Enhanced water quality monitoring improved operational strategies safeguarding the microbial water quality. The E. coli contamination of the drinking water at household level could point at recontamination in the distribution or unsafe hygienic practices at household level. Presence of faecal contamination at household level indicates potential presence of pathogens posing a health risk to consumers. Increasing chlorine dosage ensured good microbiological drinking water quality but changing the number of supply cycles had no such effect.


Assuntos
Água Potável , Qualidade da Água , Água Potável/análise , Escherichia coli , Humanos , Moçambique , Microbiologia da Água , Abastecimento de Água
2.
Environ Int ; 137: 105516, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32007691

RESUMO

Swimming ponds are artificial ecosystems for bathing in which people imitate the conditions of natural waters. Swimming in natural water may pose health risks if the water quality is microbiologically poor. Swimming ponds are small water bodies that may be used by relatively large groups of people, moreover, the water is not disinfected, e.g. by using chlorine. The draft new swimming pool legislation in the Netherlands includes water quality requirements for swimming ponds. This study focused on the examination and evaluation of the new microbiological water quality requirements, including Escherichia coli, intestinal enterococci, Pseudomonas aeruginosa and Staphylococcus aureus, in thirteen public swimming pools. In eight of thirteen swimming ponds the water quality met the requirements for fecal indicators; 93-95% of the samples met the requirement for E. coli (≤100/100 ml) and intestinal enterococci (≤50/100 ml). The requirement for P. aeruginosa (≤10/100 ml) was met in eleven of thirteen swimming ponds (99% of the samples). In 68% of the samples the requirement for S. aureus (<1/100 ml) was met. A linear mixed effect analysis showed that E. coli and intestinal enterococci concentrations were significantly dependent on the log10 of turbidity. P. aeruginosa concentrations were significantly dependent on water temperature. 31-45% of the variation between swimming ponds was explained by considering 'pond' as a random effect in the analysis. The monitoring of microbiological parameters in swimming pond water needs selective analytical methods, such as those used in this study, due to large numbers of background bacteria. The draft new Dutch swimming pool legislation provides proper guidance to ensure the microbiological safety of swimming pond water; it would benefit from inclusion of turbidity as an extra parameter. S. aureus is a relevant parameter for non-fecal shedding, although scientific literature does not provide evidence for a norm value based on a dose-response relation for exposure to S. aureus in water.


Assuntos
Piscinas , Qualidade da Água , Ecossistema , Escherichia coli , Países Baixos , Lagoas , Staphylococcus aureus , Natação , Microbiologia da Água
3.
J Food Prot ; 76(1): 93-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23317862

RESUMO

The intestinal parasites Cryptosporidium and Giardia are transmitted by water and food and cause human gastroenteritis. Filter-feeding bivalve mollusks, such as oysters and mussels, filter large volumes of water and thus concentrate such pathogens, which makes these bivalves potential vectors of disease. To assess the risk of infection from consumption of contaminated bivalves, parasite numbers and parasite recovery data are required. A modified immunomagnetic separation (IMS) procedure was used to determine Cryptosporidium oocyst and Giardia cyst numbers in individually homogenized oysters (Crassostrea gigas) and mussels (Mytilus edulis). About 12% of the commercial bivalves were positive, with low (oo)cyst numbers per specimen. The recovery efficiency of the IMS procedure was systematically evaluated. Experiments included seeding of homogenized bivalves and whole animals with 100 to 1,000 (oo)cysts. Both seeding procedures yielded highly variable recovery rates. Median Cryptosporidium recoveries were 7.9 to 21% in oysters and 62% in mussels. Median Giardia recoveries were 10 to 25% in oysters and 110% in mussels. Giardia recovery was significantly higher than Cryptosporidium recovery. (Oo)cysts were less efficiently recovered from seeded whole animals than from seeded homogenates, with median Cryptosporidium recoveries of 5.3% in oysters and 45% in mussels and median Giardia recoveries of 4.0% in oysters and 82% in mussels. Both bivalve homogenate seeding and whole animal seeding yielded higher (oo)cyst recovery in mussels than in oysters, likely because of the presence of less shellfish tissue in IMS when analyzing the smaller mussels compared with the larger oysters, resulting in more efficient (oo)cyst extraction. The data generated in this study may be used in the quantitative assessment of the risk of infection with Cryptosporidium or Giardia associated with the consumption of raw bivalve mollusks. This information may be used for making risk management decisions.


Assuntos
Bivalves/parasitologia , Cryptosporidium/isolamento & purificação , Contaminação de Alimentos/análise , Giardia/isolamento & purificação , Ostreidae/parasitologia , Frutos do Mar/parasitologia , Animais , Qualidade de Produtos para o Consumidor , Criptosporidiose/prevenção & controle , Parasitologia de Alimentos , Giardíase/prevenção & controle , Humanos , Separação Imunomagnética , Oocistos , Medição de Risco
4.
Int J Food Microbiol ; 113(2): 189-94, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16973232

RESUMO

The intestinal parasites Cryptosporidium and Giardia cause gastro-enteritis in humans and can be transmitted via contaminated water. Oysters are filter feeders that have been demonstrated to accumulate pathogens such as Salmonella, Vibrio, norovirus and Cryptosporidium from contaminated water and cause foodborne infections. Oysters are economically important shellfish that are generally consumed raw. Commercial and non-commercial oysters (Crassostrea gigas) and oyster culture water from the Oosterschelde, The Netherlands, were examined for the presence of Cryptosporidium oocysts and Giardia cysts. Nine of 133 (6.7%) oysters from two non-commercial harvesting sites contained Cryptosporidium, Giardia or both. Six of 46 (13.0%) commercial oysters harboured Cryptosporidium or Giardia in their intestines. Data on the viability of (oo)cysts recovered from Oosterschelde oysters were not obtained, however viable (oo)cysts were detected in surface waters that enter the Oosterschelde oyster harvesting areas. The detection of Cryptosporidium and Giardia in oysters destined for human consumption has implications for public health only when human pathogenic (oo)cysts that have preserved infectivity during their stay in a marine environment are present. Our data suggest that consumption of raw oysters from the Oosterschelde may occasionally lead to cases of gastro-intestinal illness.


Assuntos
Cryptosporidium/isolamento & purificação , Contaminação de Alimentos/análise , Parasitologia de Alimentos , Giardia/isolamento & purificação , Ostreidae/parasitologia , Frutos do Mar/parasitologia , Animais , Qualidade de Produtos para o Consumidor , Humanos , Países Baixos , Oocistos , Saúde Pública
5.
Appl Environ Microbiol ; 70(9): 5089-93, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345386

RESUMO

Noroviruses (previously Norwalk-like viruses) are the most common viral agents associated with food- and waterborne outbreaks of gastroenteritis. In the absence of culture methods for noroviruses, animal caliciviruses were used as model viruses to study inactivation by nonionizing (253.7-nm-wavelength [UV]) and ionizing (gamma) radiation. Here, we studied the respiratory feline calicivirus (FeCV) and the presumed enteric canine calicivirus (CaCV) and compared them with the well-studied bacteriophage MS2. When UV irradiation was used, a 3-log(10) reduction was observed at a fluence of 120 J/m(2) in the FeCV suspension and at a fluence of 200 J/m(2) for CaCV; for the more resistant phage MS2 there was a 3-log(10) reduction at a fluence of 650 J/m(2). Few or no differences were observed between levels of UV inactivation in high- and low-protein-content virus stocks. In contrast, ionizing radiation could readily inactivate MS2 in water, and there was a 3-log(10) reduction at a dose of 100 Gy, although this did not occur when the phage was diluted in high-protein-content stocks of CaCV or FeCV. The low-protein-content stocks showed 3-log(10) reductions at a dose of 500 Gy for FeCV and at a dose of 300 for CaCV. The inactivation rates for both caliciviruses with ionizing and nonionizing radiation were comparable but different from the inactivation rates for MS2. Although most FeCV and CaCV characteristics, such as overall particle and genome size and structure, are similar, the capsid sequences differ significantly, making it difficult to predict human norovirus inactivation. Adequate management of UV and gamma radiation processes for virus inactivation should limit public health risks.


Assuntos
Calicivirus Felino/efeitos da radiação , Raios Ultravioleta , Animais , Calicivirus Felino/crescimento & desenvolvimento , Gatos , Linhagem Celular , Relação Dose-Resposta à Radiação , Raios gama , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA