Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Gut Pathog ; 16(1): 13, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468325

RESUMO

BACKGROUND: The gut microbiota is associated with risk for colorectal cancer (CRC), a chronic disease for which racial disparities persist with Black Americans having a higher risk of CRC incidence and mortality compared to other groups. Given documented racial differences, the gut microbiota may offer some insight into previously unexplained racial disparities in CRC incidence and mortality. A case-control analysis comparing 11 women newly diagnosed with CRC with 22 cancer-free women matched on age, BMI, and race in a 1:2 ratio was conducted. Information about participants' diet and perceived stress levels were obtained via 24-h Dietary Recall and Perceived Stress Scale-10 survey, respectively. Participants provided stool samples from which microbial genomic DNA was extracted to reveal the abundance of 26 genera chosen a priori based on their previously observed relevance to CRC, anxiety symptoms, and diet. RESULTS: Significantly lower alpha diversity was observed among cancer-free Black women compared to all other race-cancer status combinations. No group differences were observed when comparing beta diversity. Non-Hispanic White CRC cases tended to have higher relative abundance of Fusobacteria, Gemellaceae, and Peptostreptococcus compared to all other race-cancer combination groups. Perceived stress was inversely associated with alpha diversity and was associated with additional genera. CONCLUSIONS: Our findings suggest that microbiome-CRC associations may differ by racial group. Additional large, racially diverse population-based studies are needed to determine if previously identified associations between characteristics of the gut microbiome and CRC are generalizable to Black women and other racial, ethnic, and gender groups.

2.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240357

RESUMO

Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-kB, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Feminino , Animais , Camundongos , Inulina/farmacologia , Inulina/metabolismo , Receptores de Estrogênio/metabolismo , Epigênese Genética , Suplementos Nutricionais , Prebióticos/análise
3.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711747

RESUMO

Background: The gut microbiota is associated with risk for colorectal cancer (CRC), a chronic disease for which racial disparities persist with Black Americans having a higher risk of CRC incidence and mortality compared to other groups. Given documented racial differences, the gut microbiota may offer some insight into previously unexplained racial disparities in CRC incidence and mortality. A case-control analysis comparing 11 women newly diagnosed with CRC with 22 cancer-free women matched on age, BMI, and race in a 1:2 ratio was conducted. Information about participants' diet and perceived stress levels were obtained via 24-hour Dietary Recall and Perceived Stress Scale-10 survey, respectively. Participants provided stool samples from which microbial genomic DNA was extracted to reveal the abundance of 26 genera chosen a priori based on their previously observed relevance to CRC, anxiety symptoms, and diet. Results: Significantly lower alpha diversity was observed among cancer-free Black women compared to all other race-cancer status combinations. No group differences were observed when comparing beta diversity. Non-Hispanic White CRC cases tended to have higher relative abundance of Fusobacteria, Gemellaceae, and Peptostreptococcus compared to all other race-cancer combination groups. Perceived stress was inversely associated with alpha diversity and was associated with additional genera. Conclusions: Our findings suggest that microbiome-CRC associations may differ by racial group. Additional large, racially diverse population-based studies are needed to determine if previously identified associations between characteristics of the gut microbiome and CRC are generalizable to Black women and other racial, ethnic, and gender groups.

4.
Nutrients ; 13(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917165

RESUMO

Green leafy vegetables (GLV) may reduce the risk of red meat (RM)-induced colonic DNA damage and colorectal cancer (CRC). We previously reported the primary outcomes (feasibility) of a 12-week randomized controlled crossover trial in adults with habitual high RM and low GLV intake with body mass index (BMI) > 30 kg/m2 (NCT03582306). Herein, our objective was to report a priori secondary outcomes. Participants were recruited and enrolled in 2018, stratified by gender, and randomized to two arms: immediate intervention group (IG, n = 26) or delayed intervention group (DG, n = 24). During the 4 week intervention period, participants were provided with frozen GLV and counseled to consume 1 cooked cup equivalent daily. Participants consumed their normal diet for the remaining 8 weeks. At each of four study visits, anthropometrics, stool, and blood were taken. Overall, plasma Vitamin K1 (0.50 ± 1.18 ng/mL, p < 0.001) increased, while circulating 8OHdG (-8.52 ± 19.05 ng/mL, p < 0.001), fecal 8OHdG (-6.78 ± 34.86 ng/mL, p < 0.001), and TNFα (-16.95 ± 60.82 pg/mL, p < 0.001) decreased during the GLV intervention compared to control periods. Alpha diversity of fecal microbiota and relative abundance of major taxa did not differ systematically across study periods. Further investigation of the effects of increased GLV intake on CRC risk is warranted.


Assuntos
Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/patologia , Estresse Oxidativo , Verduras , Adulto , Biodiversidade , Biomarcadores/sangue , Neoplasias Colorretais/microbiologia , Estudos Cross-Over , Estudos de Viabilidade , Fezes/microbiologia , Humanos , Pessoa de Meia-Idade , Filogenia
5.
BMC Microbiol ; 21(1): 93, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781201

RESUMO

BACKGROUND: Composition and maintenance of the microbiome is vital to gut homeostasis. However, there is limited knowledge regarding the impact of high doses of radiation, which can occur as a result of cancer radiation therapy, nuclear accidents or intentional release of a nuclear or radioactive weapon, on the composition of the gut microbiome. Therefore, we sought to analyze alterations to the gut microbiome of nonhuman primates (NHPs) exposed to high doses of radiation. Fecal samples were collected from 19 NHPs (Chinese rhesus macaques, Macaca mulatta) 1 day prior and 1 and 4 days after exposure to 7.4 Gy cobalt-60 gamma-radiation (LD70-80/60). The 16S V4 rRNA sequences were extracted from each sample, followed by bioinformatics analysis using the QIIME platform. RESULTS: Alpha Diversity (Shannon Diversity Index), revealed no major difference between pre- and post-irradiation, whereas Beta diversity analysis showed significant differences in the microbiome after irradiation (day + 4) compared to baseline (pre-irradiation). The Firmicutes/Bacteriodetes ratio, a factor known to be associated with disruption of metabolic homeostasis, decreased from 1.2 to less than 1 post-radiation exposure. Actinobacillus, Bacteroides, Prevotella (Paraprevotellaceae family) and Veillonella genera were significantly increased by more than 2-fold and Acinetobacter and Aerococcus genus were decreased by more than 10-fold post-irradiation. Fifty-two percent (10/19) of animals exposed to radiation demonstrated diarrhea at day 4 post-irradiation. Comparison of microbiome composition of feces from animals with and without diarrhea at day 4 post-irradiation revealed an increase in Lactobacillus reuteri associated with diarrhea and a decrease of Lentisphaerae and Verrucomicrobioa phyla and Bacteroides in animals exhibiting diarrhea. Animals with diarrhea at day 4 post-irradiation, had significantly lower levels of Lentisphaere and Verrucomicrobia phyla and Bacteroides genus at baseline before irradiation, suggesting a potential association between the prevalence of microbiomes and differential susceptibility to radiation-induced diarrhea. CONCLUSIONS: Our findings demonstrate that substantial alterations in the microbiome composition of NHPs occur following radiation injury and provide insight into early changes with high-dose, whole-body radiation exposure. Future studies will help identify microbiome biomarkers of radiation exposure and develop effective therapeutic intervention to mitigate the radiation injury.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbioma Gastrointestinal/efeitos da radiação , Macaca mulatta/microbiologia , Lesões por Radiação/veterinária , Animais , Fezes/microbiologia , Raios gama , RNA Ribossômico 16S/genética , Lesões por Radiação/microbiologia
6.
J Acad Nutr Diet ; 120(4): 650-659, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420171

RESUMO

BACKGROUND: Akkermansia muciniphila (AM) is a gram-negative, mucin-degrading bacteria inhabiting the gastrointestinal tract associated with host phenotypes and disease states. OBJECTIVE: Explore characteristics of overweight and obese female early-stage (0 to II) breast cancer patients with low AM relative abundance (LAM) vs high (HAM) enrolled in a presurgical weight-loss trial. DESIGN: Secondary analysis of pooled participants in a randomized controlled trial (NCT02224807). PARTICIPANTS/SETTING: During the period from 2014 to 2017, 32 female patients with breast cancer were randomized to weight-loss or attention-control arms from time of diagnosis-to-lumpectomy (mean=30±9 days). INTERVENTION: All were instructed to correct nutrient deficiencies via food sources and on upper-body exercises. The weight-loss group received additional guidance to promote 0.5 to 1 kg/wk weight-loss via energy restriction and aerobic exercise. MAIN OUTCOME MEASURES: At baseline and follow-up, sera, fecal samples, two-24 hour dietary recalls and dual x-ray absorptiometry were obtained. Bacterial DNA was isolated from feces and polymerase chain reaction (16S) amplified. Inflammatory cytokines were measured in sera. STATISTICAL ANALYSES PERFORMED: Differences between LAM and HAM participants were analyzed using t tests and nonparametric tests. Spearman correlations explored relationships between continuous variables. RESULTS: Participants were aged 61±9 years with body mass index 34.8±6. Mean AM relative abundance was 0.02% (0.007% to 0.06%) and 1.59% (0.59% to 13.57%) for LAM and HAM participants, respectively. At baseline, women with HAM vs LAM had lower fat mass (38.9±11.2 kg vs 46.4±9.0 kg; P=0.044). Alpha diversity (ie, species richness) was higher in women with HAM (360.8±84.8 vs 282.4±69.6; P=0.008) at baseline, but attenuated after weight-loss (P=0.058). At baseline, interleukin-6 level was associated with species richness (ρ=-0.471, P=0.008) and fat mass (ρ=0.529, P=0.002), but not AM. Change in total dietary fiber was positively associated with AM in LAM (ρ=0.626, P=0.002), but not HAM (ρ=0.436, P=0.180) participants. CONCLUSIONS: Among women with early-stage breast cancer, body composition is associated with AM, microbiota diversity, and interleukin-6 level. AM may mediate the effects of dietary fiber in improving microbiota composition.


Assuntos
Composição Corporal , Neoplasias da Mama/microbiologia , Fezes/microbiologia , Obesidade/microbiologia , Sobrepeso/microbiologia , Verrucomicrobia , Akkermansia , Neoplasias da Mama/etiologia , Neoplasias da Mama/cirurgia , Inquéritos sobre Dietas , Dieta Redutora/métodos , Fibras na Dieta/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Interleucina-6/sangue , Mastectomia Segmentar , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/dietoterapia , Sobrepeso/complicações , Sobrepeso/dietoterapia , Cuidados Pré-Operatórios/métodos , Redução de Peso
8.
Exp Physiol ; 104(4): 529-539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763983

RESUMO

NEW FINDINGS: What is the central question of this study? Does the link between cardiorespiratory fitness and gut microbiota diversity persist after adjusting for the potential effects of percentage body fat and activity-related energy expenditure (AEE)? What is the main finding and its importance? This is the first study to examine the link between cardiorespiratory fitness and gut microbiota diversity while accounting for the underlying effects of percentage body fat and free-living AEE. Results from the present work suggest that cardiorespiratory fitness, not physical activity, is a superior correlate of gut microbiota diversity among post-primary treatment, non-metastatic breast cancer survivors. ABSTRACT: Cancer treatment uniquely triggers multiple physiological shifts detrimental to overall health. Although previous research indicates a link between the gut microbiota and cardiorespiratory fitness, it is unclear whether these findings are attributable to potential underlying effects of percentage body fat or free-living activity energy expenditure (AEE). The microbe composition of faecal specimens from 37 breast cancer survivors was determined using 16S microbiome analyses. Individual-sample microbiota diversity (α-diversity) and between-sample community differences (ß-diversity) were examined. Peak oxygen uptake ( V̇O2peak ) was estimated from a graded exercise test consistent with the modified Naughton protocol, in which exercise terminates at 85% of age-predicted maximal heart rate. The AEE was measured over 10 days using doubly labelled water, wherein the percentage body fat was calculated from total body water. Pearson correlations revealed α-diversity indices (Chao1, observed species, PD whole tree and Shannon) to be positively associated with V̇O2peak (r = 0.34-0.51; P < 0.05), whereas the percentage of maximal heart rate during stages 1-4 of the graded exercise test (r = -0.34 to -0.50; P < 0.05) and percentage body fat (r = -0.32 to -0.41; P < 0.05) were negatively associated with the same α-diversity indices. Multiple linear regression models showed that V̇O2peak accounted for 22 and 26% of the variance in taxonomic richness (observed species) and phylogenic diversity after adjustment for percentage body fat and menopausal status. Unweighted UniFrac (ß-diversity) was significant for several outcomes involving cardiorespiratory fitness, and significant taxa comparisons were found. Associations between gut microbiota and free-living AEE were not found. Results from the present work suggest that cardiorespiratory fitness, not physical activity, is a superior correlate of gut microbiota diversity.


Assuntos
Neoplasias da Mama/microbiologia , Neoplasias da Mama/fisiopatologia , Aptidão Cardiorrespiratória/fisiologia , Microbioma Gastrointestinal/fisiologia , Aptidão Física/fisiologia , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Teste de Esforço/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Sobreviventes
9.
Exp Dermatol ; 28(2): 136-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506967

RESUMO

BACKGROUND: Studies have begun to investigate the complex relationship between host and microorganisms in non-infectious pathologies such as acne, atopic dermatitis and psoriasis. Though the skin is exposed to environmental stressors such as ultraviolet radiation (UVR), no studies exist examining the effects of both UVA and UVB on the skin microbiome. OBJECTIVE: To test the effect of UVA and UVB on human skin microbiome. METHODS: To test whether UV will alter the cutaneous microbiome, participants were exposed to doses of UVA (22-47 J/cm2 ) or UVB (100-350 mJ/cm2 ) and samples were collected. DNA was isolated and sequenced to identify the microbial composition of each sample. RESULTS: There was vast intra- and inter-subject variation at all time points, and phylum and species-level differences were identified. These included an increase in the phylum Cyanobacteria and a decrease in the family Lactobacillaceae and Pseudomonadaceae. The sensitivity of microbes to UVR and their re-colonization potential following exposure differed in UVA vs UVB samples. LIMITATIONS: The sample size was small, and the study was limited to males. CONCLUSION: The results demonstrate that UVR has profound qualitative and quantitative influences on the composition of the skin microbiome, possibly effecting skin pathology in which UVR is a factor.


Assuntos
Microbiota/efeitos da radiação , Pele/microbiologia , Pele/efeitos da radiação , Raios Ultravioleta , Acne Vulgar/microbiologia , Adulto , DNA/efeitos da radiação , Dermatite Atópica/microbiologia , Humanos , Inflamação/microbiologia , Masculino , Psoríase/microbiologia , Adulto Jovem
10.
Psychosom Med ; 80(7): 640-648, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29901485

RESUMO

OBJECTIVE: Racial health disparities persist among black and white women for colorectal cancer. Understanding racial differences in the gut microbiota and related covariates (e.g., stress) may yield new insight into unexplained colorectal cancer disparities. METHODS: Healthy non-Hispanic black or white women (age ≥19 years) provided survey data, anthropometrics, and stool samples. Fecal DNA was collected and isolated from a wipe. Polymerase chain reaction was used to amplify the V4 region of the 16SrRNA gene and 250 bases were sequenced using the MiSeq platform. Microbiome data were analyzed using QIIME. Operational taxonomic unit data were log transformed and normalized. Analyses were conducted using linear models in R Package "limma." RESULTS: Fecal samples were analyzed for 80 women (M (SD) age = 39.9 (14.0) years, 47 black, 33 white). Blacks had greater average body mass index (33.3 versus 27.5 kg/m, p < .01) and waist circumference (98.3 versus 86.6 cm, p = .003) than whites. Whites reported more stressful life events (p = .026) and greater distress (p = .052) than blacks. Final models accounted for these differences. There were no significant differences in dietary variables. Unadjusted comparisons revealed no racial differences in alpha diversity. Racial differences were observed in beta diversity and abundance of top 10 operational taxonomic units. Blacks had higher abundances than whites of Faecalibacterium (p = .034) and Bacteroides (p = .038). Stress was associated with abundances of Bifidobacterium. The association between race and Bacteroides (logFC = 1.72, 0 = 0.020) persisted in fully adjusted models. CONCLUSIONS: Racial differences in the gut microbiota were observed including higher Bacteroides among blacks. Efforts to cultivate an "ideal" gut microbiota may help reduce colorectal cancer risk.


Assuntos
Bacteroides , Bifidobacterium , Faecalibacterium , Microbioma Gastrointestinal , Estresse Psicológico , Circunferência da Cintura , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Alabama/etnologia , Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Negro ou Afro-Americano/etnologia , Índice de Massa Corporal , Estudos Transversais , Faecalibacterium/isolamento & purificação , Projetos Piloto , Estresse Psicológico/etnologia , Estresse Psicológico/microbiologia , Brancos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29376039

RESUMO

Background: Rabbits are useful for preclinical studies of sinusitis because of similar physiologic features to humans. The objective of this study is to develop a rabbit model of sinusitis that permits assessment of microanatomy and sampling for evaluating shifts in the sinus microbiota during the development of sinusitis and to test how the mucociliary clearance (MCC) defect might lead to dysbiosis and chronic rhinosinusitis (CRS). Methods: Generation of CRS was accomplished with an insertion of a sterile sponge into the left middle meatus of New Zealand white rabbits (n = 9) for 2 weeks. After sponge removal, 4 rabbits were observed for another 10 weeks and evaluated for CRS using endoscopy, microCT, visualization of the functional micro-anatomy by micro-optical coherence tomography (µOCT), and histopathological analysis of the sinus mucosa. Samples were taken from the left middle meatus and submitted for microbiome analysis. Results: CT demonstrated opacification of all left sinuses at 2 weeks in all rabbits (n = 9), which persisted in animals followed for another 12 weeks (n = 4). Histology at week 2 showed mostly neutrophils. On week 14, significant infiltration of plasma cells and lymphocytes was noted with increased submucosal glands compared to controls (p = 0.02). Functional microanatomy at 2 weeks showed diminished periciliary layer (PCL) depth (p < 0.0001) and mucus transport (p = 0.0044) compared to controls despite a thick mucus layer. By 12 weeks, the thickened mucus layer was resolved but PCL depletion persisted in addition to decreased ciliary beat frequency (CBF; p < 0.0001). The mucin fermenting microbes (Lactobacillales, Bacteroidales) dominated on week 2 and there was a significant shift to potential pathogens (e.g., Pseudomonas, Burkholderia) by week 14 compared to both controls and the acute phase (p < 0.05). Conclusion: We anticipate this reproducible model will provide a means for identifying underlying mechanisms of airway-surface liquid (ASL) depletion and fundamental changes in sinus microbial communities that contribute to the development of CRS. The rabbit model of sinusitis exhibited diminished PCL depth with delayed mucus transport and significant alterations and shift in the sinus microbiome during the development of chronic inflammation.


Assuntos
Microbiota , Rinite/microbiologia , Sinusite/microbiologia , Animais , Biodiversidade , Biópsia , Doença Crônica , Modelos Animais de Doenças , Feminino , Humanos , Coelhos , Rinite/diagnóstico por imagem , Rinite/patologia , Sinusite/diagnóstico por imagem , Sinusite/patologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA