Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(4): 502-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997760

RESUMO

Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαß1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the ßγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4ß6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the ßγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Humanos , Modelos Moleculares , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Conformação Proteica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Ligação Proteica
2.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1555-1563, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28951313

RESUMO

Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca2+) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13C and 15N NMR spectra and through 13C- and 15N-edited 1H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca2+, where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Assuntos
Calmodulina/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
3.
Nature ; 533(7602): 265-8, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27144352

RESUMO

Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the ß2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease.


Assuntos
Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Agonismo Inverso de Drogas , Agonismo Parcial de Drogas , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Termodinâmica
4.
Biochemistry ; 49(32): 6877-86, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695526

RESUMO

The C-terminal tail of the transducin alpha subunit, Gtalpha(340-350), is known to bind and stabilize the active conformation of rhodopsin upon photoactivation (R*). Five spin-labeled analogues of Gtalpha(340-350) demonstrated native-like activity in their ability to bind and stabilize R*. The spin-label 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was employed at interior sites within the peptide, whereas a Proxyl (3-carboxyl-2,2,5,5-tetramethyl-pyrrolidinyloxy) spin-label was employed at the amino terminus of the peptide. Upon binding to R*, the electron paramagnetic resonance spectrum of TOAC(343)-Gtalpha(340-350) revealed greater immobilization of the nitroxide when compared to that of the N-terminally modified Proxyl-Gtalpha(340-350) analogue. A doubly labeled Proxyl/TOAC(348)-Gtalpha(340-350) was examined by DEER spectrocopy to determine the distribution of distances between the two nitroxides in the peptides when in solution and when bound to R*. TOAC and Proxyl spin-labels in this GPCR-G-protein alpha-peptide system provide unique biophysical probes that can be used to explore the structure and conformational changes at the rhodopsin-G-protein interface.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Subunidades alfa de Proteínas de Ligação ao GTP/química , Peptídeos/química , Peptídeos/síntese química , Ligação Proteica , Estrutura Secundária de Proteína , Rodopsina/química , Rodopsina/metabolismo , Marcadores de Spin
5.
Biochemistry ; 42(26): 7931-41, 2003 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-12834345

RESUMO

To determine the role of the myristoylated amino terminus of Galpha in G protein activation, nine individual cysteine mutations along the myristoylated amino terminus of Galpha(i) were expressed in a functionally Cys-less background. Thiol reactive EPR and fluorescent probes were attached to each site as local reporters of mobility and conformational changes upon activation of Galpha(i)GDP by AlF(4)(-), as well as binding to Gbetagamma. EPR and steady state fluorescence anisotropy are consistent with a high degree of immobility for labeled residues in solution all along the amino terminus of myristoylated Galpha(i). This is in contrast to the high mobility of this region in nonmyristoylated Galpha(i) [Medkova, M., et al. (2002) Biochemistry 41, 9962-9972]. Steady state fluorescence measurements revealed pronounced increases in fluorescence upon activation for residues 14-17 and 21 located midway through the 30-amino acid stretch comprising the amino-terminal region. Collectively, the data suggest that myristoylation is an important structural determinant of the amino terminus of Galpha(i) proteins.


Assuntos
Cisteína/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Ácido Mirístico/química , Compostos de Alumínio/farmacologia , Cisteína/metabolismo , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes , Fluoretos/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Marcadores de Spin , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA