Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(30): 16545-16568, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012491

RESUMO

Brassica oleracea and Allium vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable. However, the vegetable processing chain, which consists of multiple steps (e.g., pretreatment, preservation, storage, preparation), can impact the nutritional quality of these vegetables corresponding to the nature of the health-related compounds and their susceptibility to (bio)chemical conversions. Since information about the impact of the vegetable processing chain is scattered per compound or processing step, this review targets an integration of the state of the art and discusses needs for future research. Starting with a discussion on substrate-enzyme location within the vegetable matrix, an overview is provided of the impact and potential of processing, encompassing a wide range of (nonenzymatic) conversions.


Assuntos
Allium , Brassica , Micronutrientes , Compostos Fitoquímicos , Verduras , Brassica/química , Brassica/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Verduras/química , Verduras/metabolismo , Allium/química , Allium/metabolismo , Micronutrientes/análise , Micronutrientes/metabolismo , Micronutrientes/química , Manipulação de Alimentos , Valor Nutritivo
2.
Food Chem ; 445: 138644, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354638

RESUMO

Vegetables are frequently processed before consumption. However, vegetable functionalization continues beyond ingestion as the human digestive tract exposes vegetable products to various conditions (e.g. elevated temperature, pH alterations, enzymes, electrolytes, mechanical disintegration) which can affect the stability of micronutrients and phytochemicals. Besides the extent to which these compounds withstand the challenges posed by digestive conditions, it is equally important to consider their accessibility for potential absorption by the body. Therefore, this study investigated the impact of static in vitro digestion on the stability (i.e. concentration) and bioaccessibility of vitamin C, vitamin K1, glucosinolates, S-alk(en)yl-l-cysteine sulfoxides (ACSOs) and carotenoids in Brussels sprouts (Brassica oleracea var. gemmifera) and leek (Allium ampeloprasum var. porrum). Water-soluble compounds, glucosinolates and ACSOs, remained stable during digestion while vitamin C decreased by >48%. However, all water-soluble compounds were completely bioaccessible. Lipid-soluble compounds were also stable during digestion but were only bioaccessible for 26-81%.


Assuntos
Brassica , Cebolas , Humanos , Cebolas/química , Micronutrientes , Glucosinolatos/análise , Brassica/química , Verduras , Ácido Ascórbico , Vitaminas , Digestão , Água , Compostos Fitoquímicos
3.
Food Res Int ; 175: 113764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129057

RESUMO

Vegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables. Therefore, this work studied the impact of pretreatment (relatively intact versus pureed vegetable systems), pasteurization and subsequent refrigerated storage (kinetic evaluation) on multiple health-related compounds (vitamin C, vitamin K1, carotenoids, glucosinolates and S-alk(en)yl-L-cysteine sulfoxides (ACSOs)) in Brussels sprouts and leek. It could be shown that differences introduced by different types of pretreatment were not nullified during pasteurization and refrigerated storage. Clearly, enzymatic conversions controlled during pretreatment resulted in different health-related compound profiles still observable after pasteurization. Moreover, about -42% and -100% relative concentration differences of ACSOs and dehydroascorbic acid, respectively, were detected immediately after pasteurization, while glucosinolates concentrations decreased by about 47% during refrigerated storage. All other compounds were stable during pasteurization and refrigerated storage.


Assuntos
Brassica , Cebolas , Glucosinolatos , Brassica/química , Ácido Ascórbico/análise , Pasteurização , Verduras
4.
Food Chem ; 241: 86-96, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958563

RESUMO

The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe2+), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected.


Assuntos
Antioxidantes/química , Linho , Helianthus , Pectinas/análise , Estabilidade de Medicamentos , Emulsões , Óleo de Semente do Linho , Lipídeos , Oxirredução , Óleos de Plantas , Óleo de Girassol , Água
5.
J Agric Food Chem ; 58(24): 12784-9, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21080712

RESUMO

The stability of lycopene in an olive oil/tomato emulsion during thermal processing (80-140 °C) was studied. Initially, the degradation of total lycopene (all-E plus Z-forms) occurred quickly at temperatures above 100 °C. However, a nonzero plateau value, depending on the processing temperature, was attained after longer treatment times. Besides degradation, the isomerization of total-Z-lycopene as well as the individual isomerization of all-E-, 5-Z-, 9-Z-, and 13-Z-lycopene was studied in detail. After prolonged heating, the isomer conversion reached a temperature-dependent equilibrium state. The degradation of total lycopene and the isomerization could be described by a fractional conversion model. The temperature dependency of the corresponding reaction rate constants was quantified by the Arrhenius equation. The activation energy of degradation was estimated to be 28 kJ/mol, and the activation energy of overall (all-E and total-Z) isomerization was estimated to be 52 kJ/mol.


Assuntos
Carotenoides/química , Manipulação de Alimentos/métodos , Óleos de Plantas/química , Solanum lycopersicum/química , Emulsões/química , Temperatura Alta , Isomerismo , Cinética , Licopeno , Azeite de Oliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA