Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Am J Med Genet A ; 188(7): 2036-2047, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35445792

RESUMO

Unique or multiple congenital facial skin polyps are features of several rare syndromes, from the most well-known Pai syndrome (PS), to the less recognized oculoauriculofrontonasal syndrome (OAFNS), encephalocraniocutaneous lipomatosis (ECCL), or Sakoda complex (SC). We set up a research project aiming to identify the molecular bases of PS. We reviewed 27 individuals presenting with a syndromic frontonasal polyp and initially referred for PS. Based on strict clinical classification criteria, we could confirm only nine (33%) typical and two (7%) atypical PS individuals. The remaining ones were either OAFNS (11/27-41%) or presenting with an overlapping syndrome (5/27-19%). Because of the phenotypic overlap between these entities, OAFNS, ECCL, and SC can be either considered as differential diagnosis of PS or part of the same spectrum. Exome and/or genome sequencing from blood DNA in 12 patients and from affected tissue in one patient failed to identify any replication in candidate genes. Taken together, our data suggest that conventional approaches routinely utilized for the identification of molecular etiologies responsible for Mendelian disorders are inconclusive. Future studies on affected tissues and multiomics studies will thus be required in order to address either the contribution of mosaic or noncoding variation in these diseases.


Assuntos
Anormalidades do Olho , Lipomatose , Síndromes Neurocutâneas , Agenesia do Corpo Caloso , Fenda Labial , Coloboma , Anormalidades Craniofaciais , Diagnóstico Diferencial , Orelha Externa/anormalidades , Anormalidades do Olho/genética , Oftalmopatias , Face/anormalidades , Humanos , Lipoma , Lipomatose/genética , Pólipos Nasais , Síndromes Neurocutâneas/genética , Anormalidades do Sistema Respiratório , Dermatopatias , Coluna Vertebral/anormalidades
2.
Hum Mol Genet ; 31(7): 1105-1114, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34686882

RESUMO

Functional skin barrier requires sphingolipid homeostasis; 3-ketodihydrosphingosine reductase or KDSR is a key enzyme of sphingolipid anabolism catalyzing the reduction of 3-ketodihydrosphingosine to sphinganine. Biallelic mutations in the KDSR gene may cause erythrokeratoderma variabilis et progressive-4, later specified as PERIOPTER syndrome, emphasizing a characteristic periorifical and ptychotropic erythrokeratoderma. We report another patient with compound heterozygous mutations in KDSR, born with generalized harlequin ichthyosis, which progressed into palmoplantar keratoderma. To determine whether patient-associated KDSR mutations lead to KDSR substrate accumulation and/or unrecognized sphingolipid downstream products in stratum corneum (SC), we analyzed lipids of this and previously published patients with non-identical biallelic mutations in KDSR. In SC of both patients, we identified 'hitherto' unobserved skin ceramides with an unusual keto-type sphingoid base in lesional and non-lesional areas, which accounted for up to 10% of the measured ceramide species. Furthermore, an overall shorter mean chain length of free and bound sphingoid bases was observed-shorter mean chain length of free sphingoid bases was also observed in lesional psoriasis vulgaris SC, but not generally in lesional atopic dermatitis SC. Formation of keto-type ceramides is probably due to a bottle neck in metabolic flux through KDSR and a bypass by ceramide synthases, which highlights the importance of tight intermediate regulation during sphingolipid anabolism and reveals substrate deprivation as potential therapy.


Assuntos
Dermatite Atópica , Ictiose , Ceratodermia Palmar e Plantar , Oxirredutases/metabolismo , Ceramidas/metabolismo , Epiderme/metabolismo , Humanos , Ceratodermia Palmar e Plantar/genética , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
3.
Cancer Discov ; 12(1): 220-235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429321

RESUMO

Clonal hematopoiesis is a prevalent age-related condition associated with a greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A (DNMT3A) are the most common driver of this state. DNMT3A variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations are unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated DNMT3A mutations, and found that 74% were loss-of-function mutations. Half of these variants exhibited reduced protein stability and, as a class, correlated with greater clonal expansion and acute myeloid leukemia development. We investigated the mechanisms underlying the instability using a CRISPR screen and uncovered regulated destruction of DNMT3A mediated by the DCAF8 E3 ubiquitin ligase adaptor. We establish a new paradigm to classify novel variants that has prognostic and potential therapeutic significance for patients with hematologic disease. SIGNIFICANCE: DNMT3A has emerged as the most important epigenetic regulator and tumor suppressor in the hematopoietic system. Our study represents a systematic and high-throughput method to characterize the molecular impact of DNMT3A missense mutations and the discovery of a regulated destruction mechanism of DNMT3A offering new prognostic and future therapeutic avenues.See related commentary by Ma and Will, p. 23.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
DNA Metiltransferase 3A/genética , Leucemia Mieloide Aguda/genética , Ubiquitina-Proteína Ligases/genética , Animais , Células HEK293 , Humanos , Leucócitos Mononucleares , Camundongos , Mutação de Sentido Incorreto
4.
Haematologica ; 107(4): 887-898, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34092059

RESUMO

Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined. In order to establish how constitutive mutation of DNMT3A impacts blood development in TBRS we gathered clinical data and analyzed blood parameters in 18 individuals with TBRS. We also determined the distribution of major peripheral blood cell lineages by flow cytometric analyses. Our analyses revealed non-anemic macrocytosis, a relative decrease in lymphocytes and increase in neutrophils in TBRS individuals compared to unaffected controls. We were able to recapitulate these hematologic phenotypes in multiple murine models of TBRS and identified rare hematological and non-hematological malignancies associated with constitutive Dnmt3a mutation. We further show that loss of DNMT3A in TBRS is associated with an altered DNA methylation landscape in hematopoietic cells affecting regions critical to stem cell function and tumorigenesis. Overall, our data identify key hematopoietic effects driven by DNMT3A mutation with clinical implications for individuals with TBRS and DNMT3A-associated clonal hematopoiesis or malignancies.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Deficiência Intelectual , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células Germinativas/patologia , Hematopoese/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Camundongos
5.
Neuropediatrics ; 53(4): 274-278, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879425

RESUMO

Potocki-Schaffer syndrome includes multiple exostoses, parietal foramina, and variable developmental delay/intellectual disability. It is associated with a heterozygous deletion of the 11p12p11.2 region. In some cases, the deletion extends to the WAGR locus (11p13p12). We describe here a 9-month-old girl harboring the largest germline heterozygous deletion characterized so far. Oligohydramnios and parietal foramina were noticed during pregnancy. No patient has been diagnosed before with concomitance of these two syndromes during the prenatal period. Cytogenetic diagnosis was anticipated on basis of clinical and radiological signs. Postnatal conventional karyotype confirmed an interstitial 11p deletion: 46,XX,del(11)(p11.2p15.1). Array-comparative genomic hybridization characterized a 29.6 Mb deletion. Our case illustrates the interest of high-resolution genomic approaches to correlate adequately clinical phenotypes with specific genes in suspected contiguous gene deletion syndromes.


Assuntos
Transtornos Cromossômicos , Síndrome WAGR , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Hibridização Genômica Comparativa , Encefalocele , Células Germinativas , Humanos , Síndrome WAGR/genética
6.
Clin Genet ; 99(5): 732-739, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506510

RESUMO

Skraban-Deardorff syndrome (a disease related to variations in the WDR26 gene; OMIM #617616) was first described in a cohort of 15 individuals in 2017. The syndrome comprises intellectual deficiency, severe speech impairment, ataxic gait, seizures, mild hypotonia with feeding difficulties during infancy, and dysmorphic features. Here, we report on six novel heterozygous de novo pathogenic variants in WDR26 in six probands. The patients' phenotypes were consistent with original publication. One patient displayed marked hypotonia with an abnormal muscle biopsy; this finding warrants further investigation. Gait must be closely monitored, in order to highlight any musculoskeletal or neurological abnormalities and prompt further examinations. Speech therapy and alternative communication methods should be initiated early in the clinical follow-up, in order to improve language and oral eating and drinking.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Deficiências do Desenvolvimento/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Fenótipo , Síndrome , Adulto Jovem
7.
Genet Med ; 22(11): 1851-1862, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32713943

RESUMO

PURPOSE: Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48). METHODS: We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance. RESULTS: STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects. CONCLUSION: Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.


Assuntos
Ataxia Cerebelar , Disfunção Cognitiva , Ataxias Espinocerebelares , Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Ataxia , Ataxia Cerebelar/genética , Feminino , Humanos , Masculino , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases
8.
Eur J Med Genet ; 63(4): 103823, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31816441

RESUMO

A narrow thorax with shortening of long bones is usually pointing to dysfunction of the primary cilia corresponding clinically to ciliopathies with major skeletal involvement. Mutations in at least 23 genes are likely to correspond to this clinical presentation: IFT43/52/80/81/122/140/172, WDR19/34/35/60, DYNC2H1, DYNC2LI1, CEP120, NEK1, TTC21B, TCTEX1D2, INTU, TCTN3, EVC 1/2 and KIAA0586. In addition to these, KIAA0753 variants were recently described in seven patients with Jeune asphyxiating thoracic dystrophy (ATD) (two first cousins, one unrelated patient and one fetus), Joubert syndrome (two siblings) and orofaciodigital syndrome type 6 (one patient). We present the clinical characteristics of a eighth such patient. This 4 year-old boy with narrow thorax, short limbs, severe respiratory and feeding difficulties from birth on had a history of hypotonia and developmental delay. On skeletal survey, short tubular bones (height - 5,5 SD) and a trident appearance of the pelvis were seen. Brain MRI showed cervical canal stenosis. Renal function was normal and moderate hepatomegaly was noted. A homozygous c.943C > T mutation in KIAA0753 was identified on whole exome sequencing, resulting in Gln315Ter premature termination of the corresponding protein. This case provides confirmation of an additional molecular basis for skeletal dysplasia and illustrates how ciliopathies due to mutations in a single gene may present as apparently distinct syndromes.


Assuntos
Ciliopatias/genética , Síndrome de Ellis-Van Creveld/genética , Proteínas Associadas aos Microtúbulos/genética , Pré-Escolar , Humanos , Masculino , Mutação
9.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721432

RESUMO

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Assuntos
Caderinas/genética , Transtornos do Crescimento/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Síndrome , Adulto Jovem
10.
Front Pediatr ; 7: 210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31192177

RESUMO

Baller-Gerold (BGS, MIM#218600) and Roberts (RBS, MIM#268300) syndromes are rare autosomal recessive disorders caused, respectively, by biallelic alterations in RECQL4 (MIM*603780) and ESCO2 (MIM*609353) genes. Common features are severe growth retardation, limbs shortening and craniofacial abnormalities which may include craniosynostosis. We aimed at unveiling the genetic lesions underpinning the phenotype of two unrelated children with a presumptive BGS diagnosis: patient 1 is a Turkish girl with short stature, microcephaly, craniosynostosis, seizures, intellectual disability, midface hemangioma, bilateral radial and thumb aplasia, tibial hypoplasia, and pes equinovarus. Patient 2 is an Iranian girl born to consanguineous parents with craniosynostosis, micrognathism, bilateral radial aplasia, thumbs, and foot deformity in the context of developmental delay. Upon negative RECQL4 test, whole exome sequencing (WES) analysis performed on the two trios led to the identification of two different ESCO2 homozygous inactivating variants: a previously described c.1131+1G>A transition in patient 1 and an unreported deletion, c.417del, in patient 2, thus turning the diagnosis into Roberts syndrome. The occurrence of a Baller-Gerold phenotype in two unrelated patients that were ultimately diagnosed with RBS demonstrates the strength of WES in redefining the nosological landscape of rare congenital malformation syndromes, a premise to yield optimized patients management and family counseling.

11.
Genome Res ; 29(7): 1057-1066, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160375

RESUMO

Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G > A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders.


Assuntos
Envelhecimento/genética , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Transtornos do Crescimento/genética , Mutação , Anormalidades Múltiplas/genética , Adolescente , Adulto , Amish/genética , Criança , Metilação de DNA , DNA Metiltransferase 3A , Face/anormalidades , Doenças Hematológicas/genética , Humanos , Deficiência Intelectual/genética , Leucemia Mieloide Aguda/genética , Masculino , Metiltransferases , Morfogênese/genética , Síndrome , Doenças Vestibulares/genética , Adulto Jovem
12.
Eur J Med Genet ; 62(9): 103539, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30240710

RESUMO

A 5,6 Mb de novo 19q12-q13.12 interstitial deletion was diagnosed prenatally by array-comparative genomic hybridization in a 26 weeks male fetus presenting with intra-uterine growth retardation, left clubfoot, atypical genitalia and dysmorphic features. Autopsic examination following termination of pregnancy identified a severe disorder of sex development (DSD) including hypospadias, micropenis, bifid scrotum and right cryptorchidism associated with signs of ectodermal dysplasia: scalp hypopigmentation, thick and frizzy hair, absence of eyelashes, poorly developed nails and a thin skin with prominent superficial veins. Other findings were abnormal lung lobation and facial dysmorphism. This new case of DSD with a 19q12q13 deletion expands the phenotypic spectrum associated with this chromosomal rearrangment and suggests that WTIP is a strong candidate gene involved in male sex differentiation.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 19/genética , Transtornos do Desenvolvimento Sexual/genética , Displasia Ectodérmica/genética , Retardo do Crescimento Fetal/genética , Deleção de Genes , Adulto , Transtornos Cromossômicos/patologia , Proteínas Correpressoras/genética , Proteínas do Citoesqueleto/genética , Transtornos do Desenvolvimento Sexual/patologia , Displasia Ectodérmica/patologia , Feminino , Retardo do Crescimento Fetal/patologia , Humanos , Masculino , Gravidez
13.
Hum Mutat ; 39(9): 1246-1261, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29924900

RESUMO

Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.


Assuntos
Displasia Ectodérmica/genética , Deformidades Congênitas dos Membros/genética , Dermatoses do Couro Cabeludo/congênito , Proteínas rho de Ligação ao GTP/genética , Displasia Ectodérmica/fisiopatologia , Extremidades/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Mutação , Linhagem , Receptores Notch/genética , Couro Cabeludo/fisiopatologia , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/fisiopatologia
14.
Hum Mutat ; 39(8): 1076-1080, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29782060

RESUMO

We describe progressive spastic paraparesis in two male siblings and the daughter of one of these individuals. Onset of disease occurred within the first decade, with stiffness and gait difficulties. Brisk deep tendon reflexes and extensor plantar responses were present, in the absence of intellectual disability or dermatological manifestations. Cerebral imaging identified intracranial calcification in all symptomatic family members. A marked upregulation of interferon-stimulated gene transcripts was recorded in all three affected individuals and in two clinically unaffected relatives. A heterozygous IFIH1 c.2544T>G missense variant (p.Asp848Glu) segregated with interferon status. Although not highly conserved (CADD score 10.08 vs. MSC-CADD score of 19.33) and predicted as benign by in silico algorithms, this variant is not present on publically available databases of control alleles, and expression of the D848E construct in HEK293T cells indicated that it confers a gain-of-function. This report illustrates, for the first time, the occurrence of autosomal-dominant spastic paraplegia with intracranial calcifications due to an IFIH1-related type 1 interferonopathy.


Assuntos
Helicase IFIH1 Induzida por Interferon/genética , Paraparesia Espástica/genética , Algoritmos , Encefalopatias/genética , Calcinose/genética , Feminino , Mutação com Ganho de Função/genética , Células HEK293 , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem
15.
Brain ; 141(3): 651-661, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390050

RESUMO

Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ domain containing 1-protein Thorase plays an important role in the function and integrity of mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of excitatory, glutamatergic AMPA receptors by disassembling complexes between the AMPA receptor-binding protein, GRIP1, and the AMPA receptor subunit GluA2. Using whole-exome sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 [c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular analyses show that the C-terminal end of Thorase mutant gained a novel function that strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, peroxisomal and mitochondrial proteins and affects disassembly of GluA2 and Thorase oligomer complexes. Atad1-/- neurons expressing Thorase mutantHis357Argfs*15 display reduced amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the recycling back and/or reinsertion of AMPA receptors to the plasma membrane. Taken together, our molecular and functional analyses identify an activating ATAD1 mutation as a new cause of severe encephalopathy and congenital stiffness.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Encefalopatias/genética , Regulação da Expressão Gênica/genética , Mutação/genética , Neurônios/patologia , Receptores de AMPA/metabolismo , Adenosina Trifosfatases/metabolismo , Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Proteínas de Transporte/metabolismo , Análise Mutacional de DNA , Saúde da Família , Feminino , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Consumo de Oxigênio/genética , Transporte Proteico/genética , RNA Mensageiro/metabolismo
16.
Am J Med Genet A ; 176(3): 668-675, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341480

RESUMO

The cutis laxa syndromes are multisystem disorders that share loose redundant inelastic and wrinkled skin as a common hallmark clinical feature. The underlying molecular defects are heterogeneous and 13 different genes have been involved until now, all of them being implicated in elastic fiber assembly. We provide here molecular and clinical characterization of three unrelated patients with a very rare phenotype associating cutis laxa, facial dysmorphism, severe growth retardation, hyperostotic skeletal dysplasia, and intellectual disability. This disorder called Lenz-Majewski syndrome (LMS) is associated with gain of function mutations in PTDSS1, encoding an enzyme involved in phospholipid biosynthesis. This report illustrates that LMS is an unequivocal cutis laxa syndrome and expands the clinical and molecular spectrum of this group of disorders. In the neonatal period, brachydactyly and facial dysmorphism are two early distinctive signs, later followed by intellectual disability and hyperostotic skeletal dysplasia with severe dwarfism allowing differentiation of this condition from other cutis laxa phenotypes. Further studies are needed to understand the link between PTDSS1 and extra cellular matrix assembly.


Assuntos
Cútis Laxa/diagnóstico , Cútis Laxa/genética , Hiperostose/diagnóstico , Hiperostose/genética , Mutação , Transferases de Grupos Nitrogenados/genética , Fenótipo , Adulto , Alelos , Criança , Pré-Escolar , Éxons , Fácies , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Radiografia
17.
Am J Med Genet A ; 170(11): 2847-2859, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27605097

RESUMO

KBG syndrome, due to ANKRD11 alteration is characterized by developmental delay, short stature, dysmorphic facial features, and skeletal anomalies. We report a clinical and molecular study of 39 patients affected by KBG syndrome. Among them, 19 were diagnosed after the detection of a 16q24.3 deletion encompassing the ANKRD11 gene by array CGH. In the 20 remaining patients, the clinical suspicion was confirmed by the identification of an ANKRD11 mutation by direct sequencing. We present arguments to modulate the previously reported diagnostic criteria. Macrodontia should no longer be considered a mandatory feature. KBG syndrome is compatible with autonomous life in adulthood. Autism is less frequent than previously reported. We also describe new clinical findings with a potential impact on the follow-up of patients, such as precocious puberty and a case of malignancy. Most deletions remove the 5'end or the entire coding region but never extend toward 16q telomere suggesting that distal 16q deletion could be lethal. Although ANKRD11 appears to be a major gene associated with intellectual disability, KBG syndrome remains under-diagnosed. NGS-based approaches for sequencing will improve the detection of point mutations in this gene. Broad knowledge of the clinical phenotype is essential for a correct interpretation of the molecular results. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Estudos de Associação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Proteínas Repressoras/genética , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Adolescente , Adulto , Idoso , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 16 , Hibridização Genômica Comparativa , Fácies , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Adulto Jovem
18.
Eur J Med Genet ; 59(9): 436-43, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27519580

RESUMO

BACKGROUND: Catatonia is a motor dysregulation syndrome co-occurring with a variety of psychiatric and medical disorders. Response to treatment with benzodiazepines and electroconvulsive therapy suggests a neurobiological background. The genetic etiology however remains largely unexplored. Copy Number Variants (CNV), known to predispose to neurodevelopmental disorders, may play a role in the etiology of catatonia. METHODS: This study is exploring the genetic field of catatonia through CNV analysis in a cohort of psychiatric patients featuring intellectual disability and catatonia. Fifteen adults admitted to a psychiatric inpatient unit and diagnosed with catatonia were selected for array Comparative Genomic Hybridization analysis at 200 kb resolution. We introduced a CNV interpretation algorithm to define detected CNVs as benign, unclassified, likely pathogenic or causal with regard to catatonia. RESULTS: Co-morbid psychiatric diagnoses in these patients were autism, psychotic or mood disorders. Eight patients were found to carry rare CNVs, which could not be classified as benign, comprising 6 duplications and 2 deletions. Microdeletions on 22q13.3, considered causal for catatonia, were detected in 2 patients. Duplications on 16p11.2 and 22q11.2 were previously implicated in psychiatric disorders, but not in catatonia, and were therefore considered likely pathogenic. Driven by the identification of a rare 14q11.2 duplication in one catatonic patient, additional patients with overlapping duplications were gathered to delineate a novel susceptibility locus for intellectual disability and psychiatric disorders on 14q11.2, harboring the gene SUPT16H. Three remaining variants respectively on 2q36.1, 16p13.13 and 17p13.3 were considered variants of unknown significance. CONCLUSION: The identification of catatonia-related copy number changes in this study, underscores the importance of genetic research in patients with catatonia. We confirmed that 22q13.3 deletions, affecting the gene SHANK3, predispose to catatonia, and we uncover 14q11.2 duplications as a novel susceptibility factor for intellectual and psychiatric disorders.


Assuntos
Catatonia/genética , Variações do Número de Cópias de DNA , Proteínas do Tecido Nervoso/genética , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 22 , Feminino , Predisposição Genética para Doença , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Eur J Pediatr ; 174(7): 975-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25994244

RESUMO

UNLABELLED: Berardinelli-Seip congenital lipodystrophy (BSCL) is an uncommon autosomal recessive disorder. Patients with BSCL present with a distinct phenotype since subcutaneous fat is largely lacking and musculature has become more prominent. During childhood, diabetes and acanthosis nigricans evolve and female patients may develop hirsutism. Different genes encoding this entity have been described. Achalasia is a rare esophageal motility disorder, characterized by its distinct motility pattern with absent or incomplete lower esophageal sphincter (LES) relaxations. The exact cause of achalasia is yet unknown. Here, we describe a patient with achalasia in the context of BSCL, which might be linked by a shared pathophysiologic background, as evaluated in this case report. CONCLUSION: In a BSCL patient presenting with gastrointestinal symptoms, a motility disorder of the gastrointestinal tract should be considered. WHAT IS KNOWN: • Berardinelli-Seip congenital lipodystrophy (BSCL) and achalasia are both disorders characterized by low prevalence. What is New: • Co-existence of both diseases is described in this report. Linkage by a potential common pathophysiologic background is discussed in this paper.


Assuntos
Acalasia Esofágica/complicações , Lipodistrofia Generalizada Congênita/complicações , Adolescente , Códon sem Sentido , Acalasia Esofágica/diagnóstico , Acalasia Esofágica/genética , Feminino , Humanos , Lipodistrofia Generalizada Congênita/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA