Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 34(3): 338-50, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26190144

RESUMO

Ciliary transport is required for ciliogenesis, signal transduction, and trafficking of receptors to the primary cilium. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) have been associated with ciliary dysfunction; however, its role in regulating ciliary phosphoinositides is unknown. Here we report that in neural stem cells, phosphatidylinositol 4-phosphate (PI4P) is found in high levels in cilia whereas phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is not detectable. Upon INPP5E inactivation, PI(4,5)P2 accumulates at the ciliary tip whereas PI4P is depleted. This is accompanied by recruitment of the PI(4,5)P2-interacting protein TULP3 to the ciliary membrane, along with Gpr161. This results in an increased production of cAMP and a repression of the Shh transcription gene Gli1. Our results reveal the link between ciliary regulation of phosphoinositides by INPP5E and Shh regulation via ciliary trafficking of TULP3/Gpr161 and also provide mechanistic insight into ciliary alterations found in Joubert and MORM syndromes resulting from INPP5E mutations.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anormalidades Múltiplas/genética , Animais , Movimento Celular/genética , Células Cultivadas , Doenças Cerebelares/genética , Cerebelo/anormalidades , AMP Cíclico/biossíntese , Embrião de Mamíferos/metabolismo , Anormalidades do Olho/genética , Oftalmopatias/genética , Hipocampo/embriologia , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Renais Císticas/genética , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Obesidade/genética , Doenças do Pênis/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte Proteico/genética , Retina/anormalidades , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
2.
Endocrinology ; 153(12): 6145-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23024261

RESUMO

Melanin-concentrating hormone (MCH) is a peptide produced in the hypothalamus and the zona incerta that acts on one receptor, MCH receptor 1 (MCH1R), in rodents. The MCH system has been implicated in the regulation of several centrally directed physiological responses, including the hypothalamus-pituitary-thyroid axis. Yet a possible direct effect of the MCH system on thyroid function has not been explored in detail. We now show that MCH1R mRNA is expressed in thyroid follicular cells and that mice lacking MCH1R [MCH1R-knockout (KO)] exhibit reduced circulating iodothyronine (T(4), free T(4), T(3), and rT(3)) levels and high TRH and TSH when compared with wild-type (WT) mice. Because the TSH of MCH1R-KO mice displays a normal bioactivity, we hypothesize that their hypothyroidism may be caused by defective thyroid function. Yet expression levels of the genes important for thyroid hormones synthesis or secretion are not different between the MCH1R-KO and WT mice. However, the average thyroid follicle size of the MCH1R-KO mice is larger than that of WT mice and contained more free and total T(4) and T(3) than the WT glands, suggesting that they are sequestered in the glands. Indeed, when challenged with TSH, the thyroids of MCH1R-KO mice secrete lower amounts of T(4). Similarly, secretion of iodothyronines in the plasma upon (125)I administration is significantly reduced in MCH1R-KO mice. Therefore, the absence of MCH1R affects thyroid function by disrupting thyroid hormone secretion. To our knowledge, this study is the first to link the activity of the MCH system to the thyroid function.


Assuntos
Receptores de Somatostatina/genética , Receptores de Somatostatina/fisiologia , Glândula Tireoide/metabolismo , Animais , Cruzamentos Genéticos , Regulação da Expressão Gênica , Radioisótopos do Iodo/farmacologia , Cinética , Masculino , Camundongos , Camundongos Knockout , Peptídeos/química , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
3.
Eur Thyroid J ; 1(3): 168-75, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24783016

RESUMO

BACKGROUND AND OBJECTIVE: Vitamin D is known to modulate thyroid neoplastic and autoimmune disease. We investigated the role of the vitamin D receptor (VDR) in normal thyroid development and function (thyrocytes and C cells). METHODS: The thyroid phenotype of VDR knockout mice was studied in comparison to wild-type controls. The mice were fed a normal diet or a calcium-rich diet to circumvent effects induced by hypocalcemia. RESULTS: Thyroid morphology was unaltered in VDR knockout mice. Also, expression of different parameters of thyrocyte function was comparable (immunohistochemistry). C cell physiology was, however, affected in the absence of the VDR, resulting in increased thyroidal calcitonin expression (immunohistochemistry), paralleled by increased serum calcitonin levels, but only in normocalcemic mice. To study a possible effect of vitamin D status on basal calcitonin levels in humans, serum calcitonin concentrations were compared between vitamin D-deficient and -sufficient patients (serum 25-OH vitamin D3 ≤10 and ≥40 ng/ml, respectively), but no difference was observed. CONCLUSIONS: In mice, the VDR is redundant for normal thyrocyte function, but not for C cell function, where it mediates the negative control of calcitonin by 1,25-dihydroxyvitamin D3. In patients, vitamin D status does not affect basal serum calcitonin levels. A study in healthy individuals is needed to confirm these findings.

4.
J Clin Endocrinol Metab ; 95(1): 375-82, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19952225

RESUMO

CONTEXT: Thyroid hormone synthesis requires H(2)O(2) produced by dual oxidases (Duoxes) and thyroperoxidase (TPO). Defects in this system lead to congenital hypothyroidism. H(2)O(2) damage to the thyrocytes may be a cause of cancer. OBJECTIVE: The objective of the study was to investigate whether Duox and TPO, the H(2)O(2) producer and consumer, might constitute a complex in the plasma membrane of human thyroid cells, thus maximizing efficiency and minimizing leakage and damage. DESIGN: The interaction between Duox and TPO was studied by coimmunoprecipitation and Western blotting of plasma membranes from incubated follicles prepared from freshly resected human thyroid tissue from patients undergoing thyroidectomy, and COS-7 cells transiently transfected with the entire Duoxes or truncated [amino (NH2) or carboxyl (COOH) terminal]. RESULTS: The following results were reached: 1) Duox and TPO from membranes are coprecipitated, 2) this association is up-regulated through the Gq-phospholipase C-Ca(2+)-protein kinase C pathway and down-regulated through the Gs-cAMP-protein kinase A pathway, 3) H(2)O(2) increases the association of Duox1 and Duox2 to TPO in cells and in membranes, and 4) truncated NH(2)- or COOH-terminal Duox1 and Duox2 proteins show different binding abilities with TPO. CONCLUSION: Coimmunoprecipitations show that Duox and TPO locate closely in the plasma membranes of human thyrocytes, and this association can be modulated by H(2)O(2), optimizing working efficiency and minimizing H(2)O(2) spillage. This association could represent one part of a postulated pluriprotein complex involved in iodination. This suggests that defects in this association could impair thyroid hormone synthesis and lead to thyroid insufficiency and cell damage.


Assuntos
Iodeto Peroxidase/metabolismo , NADPH Oxidases/metabolismo , Glândula Tireoide/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Oxidases Duais , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Iodeto Peroxidase/genética , Iodeto Peroxidase/isolamento & purificação , NADPH Oxidases/genética , NADPH Oxidases/isolamento & purificação , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/fisiologia , Glândula Tireoide/efeitos dos fármacos , Transfecção
5.
Endocr Relat Cancer ; 16(3): 845-56, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19509065

RESUMO

DNA double-strand breaks (DSBs) are considered as one of the primary causes of cancer but their induction by hydrogen peroxide (H(2)O(2)) is still controversial. In this work, we studied whether the high levels of H(2)O(2) produced in the thyroid to oxidize iodide could induce DNA modifications. Scores of DNA damage, in terms of strand breaks, were obtained by comet assay (alkaline condition for single-strand breaks (SSBs) and neutral condition for DSBs). We demonstrated that in a rat thyroid cell line (PCCl3), non-lethal concentrations of H(2)O(2) (0.1-0.5 mmol/l) as well as irradiation (1-10 Gy) provoked a large number of SSBs ( approximately 2-3 times control DNA damage values) but also high levels of DSBs (1.2-2.3 times control DNA damage values). We confirmed the generation of DSBs in this cell line and also in human thyroid in primary culture and in pig thyroid slices by measuring phosphorylation of histone H2AX. L-Buthionine-sulfoximine, an agent that depletes cells of glutathione, decreased the threshold to observe H(2)O(2)-induced DNA damage. Moreover, we showed that DNA breaks induced by H(2)O(2) were more slowly repaired than those induced by irradiation. In conclusion, H(2)O(2) causes SSBs and DSBs in thyroid cells. DSBs are produced in amounts comparable with those observed after irradiation but with a slower repair. These data support the hypothesis that the generation of H(2)O(2) in thyroid could also play a role in mutagenesis particularly in the case of antioxidant defense deficiency.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Mutagênicos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Ensaio Cometa , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Glutationa/metabolismo , Humanos , Ratos , Suínos , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Glândula Tireoide/efeitos da radiação
6.
J Clin Endocrinol Metab ; 94(7): 2602-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19383781

RESUMO

CONTEXT: Dominant activating mutations of the TSH receptor are the cause of familial nonautoimmune hyperthyroidism (FNAH) (inherited mutations affecting the whole gland since embryogenesis) and the majority of hyperfunctioning autonomous adenomas (AAs) (somatic mutations affecting only one cell later in the adulthood). OBJECTIVE: The objective of the study was defining the functional and molecular phenotypes of FNAH and comparing them with the ones of AA. DESIGN: Functional phenotypes were determined in vitro and molecular phenotypes by hybridization on microarray slides. PATIENTS: Nine patients with FNAH were investigated, six for functional in vitro study of the tissue and five for gene expression. RESULTS: Iodide metabolism, H(2)O(2), cAMP, and inositol phosphate generation in FNAH slices stimulated or not with TSH were normal. The mitogenic response of cultured FNAH thyrocytes to TSH was normal but more sensitive to the hormone. Gene expression profiles of FNAH and AAs showed that among 474 genes significantly regulated in FNAH, 93% were similarly regulated in AAs. Besides, 783 genes were regulated only in AAs. Bioinformatic analysis pointed out common down-regulations of genes involved in immune response, cell/cell and cell/matrix adhesions, and apoptosis. Pathways up-regulated only in AAs mainly involve diverse biosyntheses. These results are consonant with the larger growth of AAs than FNAH tissues. CONCLUSIONS: Whether hereditary or somatic after birth, activating mutations of the TSH receptor have the same qualitative consequences on the thyroid cell phenotype, but somatic mutations in AAs have a much stronger effect than FNAH mutations. Both are variants of one disease: genetic hyperthyroidism.


Assuntos
Adenoma/genética , Hipertireoidismo/genética , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Adenoma/complicações , Adenoma/metabolismo , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hipertireoidismo/etiologia , Hipertireoidismo/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/metabolismo
7.
J Endocrinol ; 198(2): 301-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18483202

RESUMO

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3-4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T(4)) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology...). Besides, T(4) induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


Assuntos
Acrilamida/toxicidade , Glândula Tireoide/efeitos dos fármacos , Neoplasias da Glândula Tireoide/induzido quimicamente , Medula Suprarrenal/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Metimazol/farmacologia , Camundongos , Glândula Tireoide/citologia , Tireotropina/sangue , Tiroxina/sangue , Tiroxina/farmacologia
8.
Endocrinology ; 148(10): 4727-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17640981

RESUMO

The genetic basis for differences in TSH sensitivity between two rat strains was examined using consomic rats generated from original strains salt-sensitive Dahl (SS) (TSH 1.8 +/- 0.1 ng/ml; free T(4) index 4.9 +/- 0.4) and Brown Norwegian (BN) (TSH 5.5 +/- 0.6 ng/ml, P < 0.05; free T(4) index 4.3 +/- 0.1, P not significant). Consomic rats SSBN6 [BN chromosome (CH) 6 placed in SS rat] and SSBN2 (BN CH 2 placed in SS rat) have TSH concentrations intermediate between pure SS and BN strains (2.9 +/- 0.3 and 3.1 +/- 0.3 ng/ml, respectively; P < 0.05). Candidate genes on rat CH 2 included TSH beta-subunit and on CH 6 the TSH receptor (TSHR). TSH from sera of BN, SS, SSBN6, and SSBN2 strains had similar in vitro bioactivity suggesting that the cause for the variable TSH concentrations was not due to an altered TSH. Physiological response to TSH was measured by changes in serum T(4) concentrations upon administration of bovine TSH (bTSH). Rat strain SS had a greater T(4) response to bTSH than BN (change in T(4), 1.3 +/- 0.1 vs. 0.4 +/- 0.1 microg/dl, P < 0.005), suggesting reduced thyrocyte sensitivity to TSH in BN. Sequencing of the TSHR coding region revealed an amino acid difference in BN (Q46R). This substitution is unlikely to contribute to the strain difference in serum TSH because both TSHR variants were equally expressed at the cell surface of transfected cells and responsive to bTSH. Given similar TSH activity and similar TSHR structure, TSHR mRNA expression in thyroid tissue was quantitated by real-time PCR. BN had 54 +/- 5% the total TSHR expression compared to SS (100 +/- 7%, P < 0.0001), when corrected for GAPDH expression, a difference confirmed at the protein level. Therefore, the higher TSH level in the BN strain appears to reflect an adjustment of the feedback loop to reduced thyrocyte sensitivity to TSH secondary to reduced TSHR expression. These strains of rat provide a model to study the cis- and trans-acting factors underlying the difference in TSHR expression.


Assuntos
Retroalimentação Fisiológica/fisiologia , Hipófise/metabolismo , Receptores da Tireotropina/metabolismo , Glândula Tireoide/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Bovinos , Mapeamento Cromossômico , Cromossomos/fisiologia , Íntrons , Concentração Osmolar , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Receptores da Tireotropina/genética , Testes de Função Tireóidea , Tireotropina/genética , Tireotropina/farmacologia , Tireotropina/fisiologia , Tireotropina Subunidade beta/genética , Tiroxina/sangue
9.
J Clin Endocrinol Metab ; 92(7): 2816-20, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17456567

RESUMO

CONTEXT: In the human thyroid gland, TSH activates both the cAMP and inositol phosphates (IP) signaling cascades via binding to the TSH receptor (TSHR). Biallelic TSHR loss-of-function mutations cause resistance to TSH, clinically characterized by hyperthyrotropinemia, and normal or reduced thyroid gland volume, thyroid hormone output, and iodine uptake. OBJECTIVE: We report and study a novel familial TSHR mutation (L653V). RESULTS: Homozygous individuals expressing L653V had euthyroid hyperthyrotropinemia. Paradoxically, patients had significantly higher 2-h radioiodide uptake and 2- to 24-h radioiodide uptake ratios compared with heterozygous, unaffected family members, suggesting an imbalance between iodide trapping and organification. In transfected COS-7 cells, the mutant TSHR had normal surface expression, basal activity, and TSH-binding affinity, equally (2.2-fold) increased EC50 values for TSH-induced cAMP and IP accumulation, and normal maximum cAMP generation. In contrast, the efficacy of TSH for generating IP was more than 7-fold lower with the mutant compared with wild-type TSHR. CONCLUSIONS: We identified and characterized a TSHR defect, preferentially affecting the IP pathway, with a phenotype distinct from previously reported loss-of-function mutations. Results provide the first in vivo evidence for the physiological role of the TSHR/IP/Ca2+ cascade in regulating iodination. According to systematic in vitro mutagenesis studies, other TSHR mutations can result in even complete loss of IP signaling with retained cAMP induction. We hypothesize that such TSHR mutations could be the cause in unexplained partial organification defects.


Assuntos
Receptores da Tireotropina/sangue , Receptores da Tireotropina/genética , Doenças da Glândula Tireoide/genética , Glândula Tireoide/metabolismo , Hormônios Tireóideos/biossíntese , Adulto , Animais , Células COS , Cálcio/metabolismo , Criança , Chlorocebus aethiops , AMP Cíclico/metabolismo , Feminino , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Linhagem , Fenótipo , Transdução de Sinais/fisiologia , Doenças da Glândula Tireoide/metabolismo
10.
Mol Endocrinol ; 21(4): 921-32, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17202321

RESUMO

The expression of caveolins is down-regulated in tissue samples of human thyroid autonomous adenomas and in the animal model of this disease. Because several cell types present in thyroid express caveolins, it remained unclear if this down-regulation occurs in thyrocytes and which are the mechanism and role of this down-regulation in the tumor context. Here we show that prolonged stimulation of isolated human thyrocytes by TSH/cAMP/cAMP-dependent protein kinase inhibits caveolins' expression. The expression of caveolins is not down-regulated by activators of other signaling pathways relevant to thyroid growth/function. Therefore, the down-regulation of caveolins' expression in autonomous adenomas is a direct consequence of the chronic activation of the TSH/cAMP pathway in thyrocytes. The down-regulation of caveolin-1 occurs at the mRNA level, with a consequent protein decrease. TSH/cAMP induces a transcription-dependent, translation-independent destabilization of the caveolin-1 mRNA. This effect is correlated to the known proliferative role of that cascade in thyrocytes. In vivo, thyrocytes of caveolin-1 knockout mice display enhanced proliferation. This demonstrates, for the first time, the in vivo significance of the specific caveolin-1 down-regulation by one mitogenic cascade and its relation to a human disease.


Assuntos
Caveolina 1/metabolismo , AMP Cíclico/fisiologia , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Tireotropina/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Caveolina 1/análise , Caveolina 1/genética , Caveolina 2/análise , Caveolina 2/genética , Caveolina 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Humanos , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Glândula Tireoide/efeitos dos fármacos , Tireotropina/farmacologia
11.
Oncogene ; 24(46): 6902-16, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16027733

RESUMO

The purpose of this study was to use the microarray technology to define expression profiles characteristic of thyroid autonomous adenomas and relate these findings to physiological mechanisms. Experiments were performed on a series of separated adenomas and their normal counterparts on Micromax cDNA microarrays covering 2400 genes (analysis I), and on a pool of adenomatous tissues and their corresponding normal counterparts using microarrays of 18,000 spots (analysis II). Results for genes present on the two arrays corroborated and several gene regulations previously determined by Northern blotting or microarrays in similar lesions were confirmed. Five overexpressed and 24 underexpressed genes were also confirmed by real-time RT-PCR in some of the samples used for microarray analysis, and in additional tumor specimens. Our results show: (1) a change in the cell populations of the tumor, with a marked decrease in lymphocytes and blood cells and an increase in endothelial cells. The latter increase would correspond to the establishment of a close relation between thyrocytes and endothelial cells and is related to increased N-cadherin expression. It explains the increased blood flow in the tumor; (2) a homogeneity of tumor samples correlating with their common physiopathological mechanism: the constitutive activation of the thyrotropin (TSH)/cAMP cascade; (3) a low proportion of regulated genes consistent with the concept of a minimal deviation tumor; (4) a higher expression of genes coding for specific functional proteins, consistent with the functional hyperactivity of the tumors; (5) an increase of phosphodiesterase gene expression which explains the relatively low cyclic AMP levels measured in these tumors; (6) an overexpression of antiapoptotic genes and underexpression of proapoptotic genes compatible with their low apoptosis rate; (7) an overexpression of N-cadherin and downregulation of caveolins, which casts doubt about the use of these expressions as markers for malignancy.


Assuntos
Adenoma/genética , Adenoma/fisiopatologia , Perfilação da Expressão Gênica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/fisiopatologia , Adolescente , Adulto , Idoso , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
FEBS Lett ; 517(1-3): 195-200, 2002 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12062436

RESUMO

The wide spectrum of naturally occurring mutations able to activate the thyrotropin (TSH) receptor provides a useful tool to approach the structure of the active state(s) of the glycoprotein hormone receptors. Here we show that the side-chain of the highly conserved N7.49 (Asn 674) in TM7 is mandatory for activation of the TSH receptor, not only by TSH, but also by a panel of eight natural and two artificial activating mutations. Basal activity levels of the mutants were significantly decreased by suppression of the side-chain of N7.49 (N7.49A double mutants). In addition, comparative effects of the N7.49A substitution on the ten mutants demonstrate that basal activity and agonist- or mutation-stimulated activity might involve different structural changes.


Assuntos
Asparagina/metabolismo , AMP Cíclico/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores da Tireotropina/metabolismo , Tireotropina/metabolismo , Animais , Asparagina/genética , Sítios de Ligação , Células COS , Chlorocebus aethiops , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptores da Tireotropina/química , Receptores da Tireotropina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA