Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35935602

RESUMO

Peripheral nerve blocks improve both pain control and functional outcomes following total knee arthroplasty (TKA). However, few studies have examined the effects of different peripheral nerve block protocols on postoperative range of motion. The present study assessed the impact of a single-shot femoral nerve block (SFNB) versus continuous femoral nerve block (CFNB) on postoperative range of motion and the need for subsequent manipulation following TKA. Methods: We retrospective reviewed patient charts to identify patients who had undergone primary elective unilateral TKA by 2 surgeons at a high-volume orthopaedic specialty hospital over a 3-year period. A total of 1,091 patients received either SFNB or CFNB and were included in the data analysis. Identical surgical techniques, postoperative oral analgesic regimens, and rehabilitation protocols were used for all patients. Patients with <90° of flexion at 6 weeks postoperatively underwent closed manipulation under anesthesia (MUA). Results: Overall, 608 patients (55.7%) received CFNB and 483 patients (44.3%) received SFNB. Overall, 94 patients (8.6%) required postoperative manipulation for stiffness, including 36 (5.9%) in the CFNB group and 58 (12%) in the SFNB group. The 50% reduction in the need for manipulation in the CFNB group was independent of primary surgeon (p > 0.05). No significant differences were observed between the groups in terms of postoperative range of motion, either at the time of discharge or at 6 weeks postoperatively. A history of knee surgery, decreased preoperative range of motion, and decreased range of motion at the time of discharge were significantly associated with the need for further MUA (p = 0.0002, p < 0.0001, and p < 0.0001, respectively). Conclusions: Despite similar final postoperative range of motion between patients in both groups, our results suggest that CFNB may be superior to SFNB for reducing the need for postoperative manipulation after primary TKA. Furthermore, a history of ipsilateral knee surgery, decreased preoperative range of motion, and decreased range of motion at the time of discharge were identified as independent risk factors for postoperative stiffness requiring MUA after primary TKA. Level of Evidence: Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

3.
J Foot Ankle Surg ; 56(1): 117-120, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27612414

RESUMO

We report a case using retrograde tibial nailing as treatment of nonunion of a distal tibial osteotomy, which was performed as part of a complex reconstruction of distal tibial malunion with ankle arthritis. Although retrograde nailing has classically been used for tibial-talar-calcaneal arthrodesis, this method spares the subtalar joint. Preservation of some hindfoot motion by subtalar mobility allows for a decrease in the loss of function typically seen with tibial-talar-calcaneal arthrodesis.


Assuntos
Articulação do Tornozelo/cirurgia , Fixação Intramedular de Fraturas/métodos , Fraturas não Consolidadas/cirurgia , Fraturas Intra-Articulares/cirurgia , Amplitude de Movimento Articular/fisiologia , Fraturas da Tíbia/cirurgia , Idoso , Articulação do Tornozelo/diagnóstico por imagem , Artrodese/efeitos adversos , Artrodese/métodos , Seguimentos , Fraturas não Consolidadas/diagnóstico por imagem , Humanos , Escala de Gravidade do Ferimento , Fraturas Intra-Articulares/diagnóstico por imagem , Masculino , Osteotomia/efeitos adversos , Osteotomia/métodos , Medição da Dor , Radiografia/métodos , Recuperação de Função Fisiológica , Reoperação/métodos , Fraturas da Tíbia/diagnóstico por imagem , Resultado do Tratamento
4.
Brain Sci ; 6(4)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27792175

RESUMO

It has been known that both estrogen (E2) and nitric oxide (NO) are critical for proper cardiovascular system (CVS) function. It has also been demonstrated that E2 acts as an upstream effector in the nitric oxide (NO) pathway. Results from this study indicate that the use of a nitric oxide synthase (NOS) inhibitor (NOSI) which targets specifically neuronal NOS (nNOS or NOS1), proadifen hydrochloride, caused a significant depression of fish heart rates (HR) accompanied by increased arrhythmic behavior. However, none of these phenotypes were evident with either the inhibition of endothelial NOS (eNOS) or inducible NOS (iNOS) isoforms. These cardiac arrhythmias could also be mimicked by inhibition of E2 synthesis with the aromatase inhibitor (AI), 4-OH-A, in a manner similar to that of nNOSI. In both scenarios, by using an NO donor (DETA-NO) in either NO + nNOSI or E2 + AI co-treatments, fish could be significantly rescued from decreased HR and increased arrhythmias. However, the addition of an NOS inhibitor (L-NAME) to the E2 + AI co-treatment fish prevented the rescue of low heart rates and arrhythmias, which strongly implicates the NO pathway as a downstream E2 targeted molecule for the maintenance of healthy cardiomyocyte contractile conditions in the developing zebrafish. Cardiac arrhythmias could be mimicked by the S-nitrosylation pathway inhibitor DTT (1,4-dithiothreitol) but not by ODQ (1H-[1-3]oxadiazolo[4,3-a]quinoxalin-1-one), the inhibitor of the NO receptor molecule sGC in the cGMP-dependent pathway. In both the nNOSI and AI-induced arrhythmic conditions, 100% of the fish expressed the phenotype, but could be rapidly rescued with maximum survival by a washout with dantrolene, a ryanodine Ca2+ channel receptor blocker, compared to the time it took for rescue using a control salt solution. In addition, of the three NOS isoforms, eNOS was the one most implicated in the maintenance of an intact developing fish vascular system. In conclusion, results from this study have shown that nNOS is the prominent isoform that is responsible, in part, for maintaining normal heart rates and prevention of arrhythmias in the developing zebrafish heart failure model. These phenomena are related to the upstream stimulatory regulation by E2. On the other hand, eNOS has a minimal effect and iNOS has little to no influence on this phenomenon. Data also suggests that nNOS acts on the zebrafish cardiomyocytes through the S-nitrosylation pathway to influence the SR ryanidine Ca2+ channels in the excitation-coupling phenomena. In contrast, eNOS is the prominent isoform that influences blood vessel development in this model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA