Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 156: 106711, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153890

RESUMO

BACKGROUND: Exposure to radiofrequency electromagnetic fields (RF-EMF) is often measured with personal exposimeters, but the accuracy of measurements can be hampered as carrying the devices on-body may result in body shielding. Further, the compact design may compromise the frequency selectivity of the sensor. The aim of this study was to compare measurements obtained using a multi-band body-worn distributed-exposimeter (BWDM) with two commercially available personal exposimeters (ExpoM-RF and EmeSpy 200) under real-life conditions. METHODS: The BWDM measured power density in 10 frequency bands (800, 900, 1800, 2100, 2600 MHz, DECT 1900 MHz, WiFi 2.4 GHz; with separate uplink/downlink bands for 900, 1800 and 2100 MHz); using 20 separate antennas integrated in a vest and placed on diametrically opposite locations on the body, to minimize body-shielding. RF-EMF exposure data were collected from several microenvironments (e.g. shopping areas, train stations, outdoor rural/ urban residential environments, etc.) by walking around pre-defined areas/routes in Belgium, Spain, France, the Netherlands and Switzerland. Measurements were taken every 1-4 s with the BWDM in parallel with an ExpoM-RF and an EmeSpy 200 exposimeter. We calculated medians and interquartile ranges (IQRs) and compared difference, ratios and correlations of geometric mean RF-EMF exposure levels per microenvironment as measured with the exposimeters and the BWDM. RESULTS: Across 267 microenvironments, medians and IQR of total BWDM measured RF-EMF exposure was 0.13 (0.05-0.33) mW/m2. Difference: IQR of exposimeters minus BWDM exposure levels was -0.011 (-0.049 to 0.0095) mW/m2 for the ExpoM-RF and -0.056 (-0.14 to -0.017) for the EmeSpy 200; ratios (exposimeter/BWDM) of total exposure had an IQR of 0.79 (0.55-1.1) for the ExpoM-RF and 0.29 (0.22-0.38) for the EmeSpy 200. Spearman correlations were 0.93 for the ExpoM-RF vs the BWDM and 0.96 for the EmeSpy 200 vs the BWDM. DISCUSSION AND CONCLUSIONS: Results indicate that exposimeters worn on-body provide somewhat lower total RF-EMF exposure as compared to measurements conducted with the BWDM, in line with effects from body shielding. Ranking of exposure levels of microenvironments showed high correspondence between the different device types. Our results are informative for the interpretation of existing epidemiological research results.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental , Ondas de Rádio/efeitos adversos , Espanha , Suíça
2.
Sensors (Basel) ; 18(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346280

RESUMO

A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7-90.8 µW·m - 2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6.


Assuntos
Ondas de Rádio , Bélgica , Calibragem , Campos Eletromagnéticos , Humanos , Monitoramento de Radiação , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA