Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Pediatr Pulmonol ; 59(4): 915-922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38179886

RESUMO

BACKGROUND: The introduction of modulator therapy for cystic fibrosis (CF) has led to an increased interest in the detection of small airway disease (SAD) as sensitive marker of treatment response. The particles in exhaled air (PExA) method, which records exhaled particle mass (PEx ng/L) and number (PExNR), detects SAD in adult patients. Our primary aim was to investigate if PExA outcomes in children with CF are different when compared to controls and associated with more severe disease. Secondary aims were to assess feasibility and repeatability of PExA in children with CF and to correlate PExA to multiple breath nitrogen washout (MBNW) as an established marker of SAD. METHODS: Thirteen healthy children (HC), 17 children with CF with normal lung function (CF-N) (FEV1 z-score ≥ -1.64) and six with airway obstruction (CF-AO) (FEV1 z-score < -1.64) between 8 and 18 years performed MBNW followed by PExA and spirometry. Children with CF repeated the measurements after 3 months. RESULTS: PEx ng/L and PExNR/L per liter of exhaled breath were similar between the three groups. The lung clearance index (LCI) was significantly higher in both CF-N and CF-AO compared to HC. All participants, except one, were able to perform PExA. Coefficient of variation for PEx ng/l was (median) 0.38, range 0-1.25 and PExNR/l 0.38, 0-1.09. Correlation between LCI and PEx ng/l was low, rs 0.32 (p = .07). CONCLUSION: PExA is feasible in children. In contrast to LCI, PExA did not differentiate healthy children from children with CF suggesting it to be a less sensitive tool to detect SAD.


Assuntos
Asma , Fibrose Cística , Criança , Adulto , Humanos , Testes de Função Respiratória/métodos , Espirometria/métodos , Expiração , Nitrogênio , Testes Respiratórios/métodos , Pulmão
2.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L65-L70, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050688

RESUMO

IL-33 and IL-1RL1 are well-replicated asthma genes that act in a single pathway toward type-2 immune responses. IL-33 is expressed by basal epithelial cells, and the release of IL-33 upon epithelial damage can activate innate lymphoid cells, T helper-2 cells, basophilic granulocytes, and mast cells through a receptor complex containing IL-1RL1. However, it is unknown how bronchial epithelial cells respond to IL-33, and whether this response is increased in the disease. We aimed to characterize the IL-33-driven transcriptomic changes in cultured primary bronchial epithelial cells from patients with asthma and healthy controls. Primary bronchial epithelial cells (PBECs) were obtained by bronchial brushing from six healthy control for air-liquid interface (ALI) cultures, whereas we selected eight healthy controls and seven patients with asthma for epithelial organoid cultures. We then stimulated the cultures for 24 h with recombinant IL-33 (rhIL33) at various concentrations with 1, 10, and 50 ng/mL for the ALI cultures and 20 ng/mL and 100 ng/mL for the organoid cultures, followed by RNA-sequencing and differential gene expression analysis. We did not detect any genome-wide significant differentially expressed genes after stimulation of PBECs with IL-33, irrespective of growth in three-dimensional (3-D) epithelial organoids or after differentiation in ALI cultures. These results were identical between PBECs obtained from patients with asthma or from healthy control subjects. We detected very low levels of IL-1RL1 gene expression in these airway epithelial cell cultures. We conclude that bronchial epithelial cells do not have a transcriptional response to IL-33, independent of their differentiation state. Hence, the airway epithelium acts as a source of IL-33 but does not seem to contribute to the response upon release of the alarmin after epithelial damage.NEW & NOTEWORTHY The IL-33/IL-1RL1 pathway stands as a formidable genetic predisposition for asthma, with ongoing clinical developments of various drugs designed to mitigate its influence in patients with asthma. The absence of a transcriptomic reaction to IL-33 within the bronchial epithelium holds significance in the pursuit of identifying biomarkers that can aid in pinpointing those individuals who would derive the greatest benefit from therapies targeting the IL-33 pathway.


Assuntos
Asma , Imunidade Inata , Humanos , Interleucina-33/genética , Linfócitos , Asma/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas
3.
Respir Res ; 24(1): 308, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062491

RESUMO

BACKGROUND: Asthma is stratified into type 2-high and type 2-low inflammatory phenotypes. Limited success has been achieved in developing drugs that target type 2-low inflammation. Previous studies have linked IL-6 signaling to severe asthma. IL-6 cooperates with soluble-IL-6Rα to activate cell signaling in airway epithelium. OBJECTIVE: We sought to study the role of sIL-6Rα amplified IL-6 signaling in airway epithelium and to develop an IL-6+ sIL-6Rα gene signature that may be used to select asthma patients who potentially respond to anti-IL-6 therapy. METHODS: Human airway epithelial cells were stimulated with combinations of IL-6, sIL-6Rα, and inhibitors, sgp130 (Olamkicept), and anti-IL-6R (Tocilizumab), to assess effects on pathway activation, epithelial barrier integrity, and gene expression. A gene signature was generated to identify IL-6 high patients using bronchial biopsies and nasal brushes. RESULTS: Soluble-IL-6Rα amplified the activation of the IL-6 pathway, shown by the increase of STAT3 phosphorylation and stronger gene induction in airway epithelial cells compared to IL-6 alone. Olamkicept and Tocilizumab inhibited the effect of IL-6 + sIL-6Rα on gene expression. We developed an IL-6 + sIL-6Rα gene signature and observed enrichment of this signature in bronchial biopsies but not nasal brushes from asthma patients compared to healthy controls. An IL-6 + sIL-6Rα gene signature score was associated with lower levels of sputum eosinophils in asthma. CONCLUSION: sIL-6Rα amplifies IL-6 signaling in bronchial epithelial cells. Higher local airway IL-6 + sIL-6Rα signaling is observed in asthma patients with low sputum eosinophils.


Assuntos
Asma , Interleucina-6 , Humanos , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Inflamação , Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Transdução de Sinais
4.
Am J Respir Crit Care Med ; 208(10): 1075-1087, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708400

RESUMO

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Interleucina-33/genética , Fumar/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Perfilação da Expressão Gênica
5.
BMJ Open Respir Res ; 10(1)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37612099

RESUMO

BACKGROUND: The prevalence and clinical profile of asthma with airflow obstruction (AO) remain uncertain. We aimed to phenotype AO in population- and clinic-based cohorts. METHODS: This cross-sectional multicohort study included adults ≥50 years from nine CADSET cohorts with spirometry data (N=69 789). AO was defined as ever diagnosed asthma with pre-BD or post-BD FEV1/FVC <0.7 in population-based and clinic-based cohorts, respectively. Clinical characteristics and comorbidities of AO were compared with asthma without airflow obstruction (asthma-only) and chronic obstructive pulmonary disease (COPD) without asthma history (COPD-only). ORs for comorbidities adjusted for age, sex, smoking status and body mass index (BMI) were meta-analysed using a random effects model. RESULTS: The prevalence of AO was 2.1% (95% CI 2.0% to 2.2%) in population-based, 21.1% (95% CI 18.6% to 23.8%) in asthma-based and 16.9% (95% CI 15.8% to 17.9%) in COPD-based cohorts. AO patients had more often clinically relevant dyspnoea (modified Medical Research Council score ≥2) than asthma-only (+14.4 and +14.7 percentage points) and COPD-only (+24.0 and +5.0 percentage points) in population-based and clinic-based cohorts, respectively. AO patients had more often elevated blood eosinophil counts (>300 cells/µL), although only significant in population-based cohorts. Compared with asthma-only, AO patients were more often men, current smokers, with a lower BMI, had less often obesity and had more often chronic bronchitis. Compared with COPD-only, AO patients were younger, less often current smokers and had less pack-years. In the general population, AO patients had a higher risk of coronary artery disease than asthma-only and COPD-only (OR=2.09 (95% CI 1.26 to 3.47) and OR=1.89 (95% CI 1.10 to 3.24), respectively) and of depression (OR=1.41 (95% CI 1.19 to 1.67)), osteoporosis (OR=2.30 (95% CI 1.43 to 3.72)) and gastro-oesophageal reflux disease (OR=1.68 (95% CI 1.06 to 2.68)) than COPD-only, independent of age, sex, smoking status and BMI. CONCLUSIONS: AO is a relatively prevalent respiratory phenotype associated with more dyspnoea and a higher risk of coronary artery disease and elevated blood eosinophil counts in the general population compared with both asthma-only and COPD-only.


Assuntos
Asma , Doença da Artéria Coronariana , Doença Pulmonar Obstrutiva Crônica , Masculino , Humanos , Estudos Transversais , Asma/epidemiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Dispneia
6.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L460-L466, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37605846

RESUMO

Inhalation of noxious gasses induces oxidative stress in airway epithelial cells (AECs), which may lead to cellular senescence and contribute to the development of chronic obstructive pulmonary disease (COPD). FAM13A, a well-known COPD susceptibility gene, is highly expressed in airway epithelium. We studied whether its expression is associated with aging and cellular senescence and affects airway epithelial responses to paraquat, a cellular senescence inducer. The association between age and FAM13A expression was investigated in two datasets of human lung tissue and bronchial brushings from current/ex-smokers with/without COPD. Protein levels of FAM13A and cellular senescence marker p21 were investigated using immunohistochemistry in lung tissue from patients with COPD. In vitro, FAM13A and P21 expression was assessed using qPCR in air-liquid-interface (ALI)-differentiated AECs in absence/presence of paraquat. In addition, FAM13A was overexpressed in human bronchial epithelial 16HBE cells and the effect on P21 expression (qPCR) and mitochondrial reactive oxygen species (ROS) production (MitoSOX staining) was assessed. Lower FAM13A expression was significantly associated with increasing age in lung tissue and bronchial epithelium. In airway epithelium of patients with COPD, we found a negative correlation between FAM13A and p21 protein levels. In ALI-differentiated AECs, the paraquat-induced decrease in FAM13A expression was accompanied by increased P21 expression. In 16HBE cells, the overexpression of FAM13A significantly reduced paraquat-induced P21 expression and mitochondrial ROS production. Our data suggest that FAM13A expression decreases with aging, resulting in higher P21 expression and mitochondrial ROS production in the airway epithelium, thus facilitating cellular senescence and as such potentially contributing to accelerated lung aging in COPD.NEW & NOTEWORTHY To our knowledge, this is the first study investigating the role of the COPD susceptibility gene FAM13A in aging and cellular senescence. We found that FAM13A negatively regulates the expression of the cellular senescence marker P21 and mitochondrial ROS production in the airway epithelium. In this way, the lower expression of FAM13A observed upon aging may facilitate cellular senescence and potentially contribute to accelerated lung aging in COPD.


Assuntos
Paraquat , Doença Pulmonar Obstrutiva Crônica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Paraquat/toxicidade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Senescência Celular , Proteínas Ativadoras de GTPase/metabolismo
7.
Respir Res ; 24(1): 130, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170105

RESUMO

After more than two years the COVID-19 pandemic, that is caused by infection with the respiratory SARS-CoV-2 virus, is still ongoing. The risk to develop severe COVID-19 upon SARS-CoV-2 infection is increased in individuals with a high age, high body mass index, and who are smoking. The SARS-CoV-2 virus infects cells of the upper respiratory tract by entering these cells upon binding to the Angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is expressed in various cell types in the lung but the expression is especially high in goblet and ciliated cells. Recently, it was shown that next to its full-length isoform, ACE2 also has a short isoform. The short isoform is unable to bind SARS-CoV-2 and does not facilitate viral entry. In the current study we investigated whether active cigarette smoking increases the expression of the long or the short ACE2 isoform. We showed that in active smokers the expression of the long, active isoform, but not the short isoform of ACE2 is higher compared to never smokers. Additionally, it was shown that the expression of especially the long, active isoform of ACE2 was associated with secretory, club and goblet epithelial cells. This study increases our understanding of why current smokers are more susceptible to SARS-CoV-2 infection, in addition to the already established increased risk to develop severe COVID-19.


Assuntos
COVID-19 , Mucosa Respiratória , Fumar , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , COVID-19/imunologia , Epitélio/metabolismo , Pandemias , Peptidil Dipeptidase A , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Fumar/efeitos adversos , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Cell Rep ; 42(6): 112525, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243592

RESUMO

Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Neutrófilos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Inflamação
9.
Br J Radiol ; 96(1144): 20220709, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728829

RESUMO

OBJECTIVE: To evaluate detectability and semi-automatic diameter and volume measurements of pulmonary nodules in ultralow-dose CT (ULDCT) vs regular-dose CT (RDCT). METHODS: Fifty patients with chronic obstructive pulmonary disease (COPD) underwent RDCT on 64-multidetector CT (120 kV, filtered back projection), and ULDCT on third-generation dual source CT (100 kV with tin filter, advanced modeled iterative reconstruction). One radiologist evaluated the presence of nodules on both scans in random order, with discrepancies judged by two independent radiologists and consensus reading. Sensitivity of nodule detection on RDCT and ULDCT was compared to reader consensus. Systematic error in semi-automatically derived diameter and volume, and 95% limits of agreement (LoA) were evaluated. Nodule classification was compared by κ statistics. RESULTS: ULDCT resulted in 83.1% (95% CI: 81.0-85.2) dose reduction compared to RDCT (p < 0.001). 45 nodules were present, with diameter range 4.0-25.3 mm and volume range 16.0-4483.0 mm3. Detection sensitivity was non-significant (p = 0.503) between RDCT 88.8% (95% CI: 76.0-96.3) and ULDCT 95.5% (95% CI: 84.9-99.5). No systematic bias in diameter measurements (median difference: -0.2 mm) or volumetry (median difference: -6 mm3) was found for ULDCT compared to RDCT. The 95% LoA for diameter and volume measurements were ±3.0 mm and ±33.5%, respectively. κ value for nodule classification was 0.852 for diameter measurements and 0.930 for volumetry. CONCLUSION: ULDCT based on Sn100 kV enables comparable detectability of solid pulmonary nodules in COPD patients, at 83% reduced radiation dose compared to RDCT, without relevant difference in nodule measurement and size classification. ADVANCES IN KNOWLEDGE: Pulmonary nodule detectability and measurements in ULDCT are comparable to RDCT.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Doença Pulmonar Obstrutiva Crônica , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada Multidetectores , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
10.
Thorax ; 78(4): 335-343, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598042

RESUMO

RATIONALE: Severe asthma and chronic obstructive pulmonary disease (COPD) share common pathophysiological traits such as relative corticosteroid insensitivity. We recently published three transcriptome-associated clusters (TACs) using hierarchical analysis of the sputum transcriptome in asthmatics from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort comprising one Th2-high inflammatory signature (TAC1) and two Th2-low signatures (TAC2 and TAC3). OBJECTIVE: We examined whether gene expression signatures obtained in asthma can be used to identify the subgroup of patients with COPD with steroid sensitivity. METHODS: Using gene set variation analysis, we examined the distribution and enrichment scores (ES) of the 3 TACs in the transcriptome of bronchial biopsies from 46 patients who participated in the Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease COPD study that received 30 months of treatment with inhaled corticosteroids (ICS) with and without an added long-acting ß-agonist (LABA). The identified signatures were then associated with longitudinal clinical variables after treatment. Differential gene expression and cellular convolution were used to define key regulated genes and cell types. MEASUREMENTS AND MAIN RESULTS: Bronchial biopsies in patients with COPD at baseline showed a wide range of expression of the 3 TAC signatures. After ICS±LABA treatment, the ES of TAC1 was significantly reduced at 30 months, but those of TAC2 and TAC3 were unaffected. A corticosteroid-sensitive TAC1 signature was developed from the TAC1 ICS-responsive genes. This signature consisted of mast cell-specific genes identified by single-cell RNA-sequencing and positively correlated with bronchial biopsy mast cell numbers following ICS±LABA. Baseline levels of gene transcription correlated with the change in RV/TLC %predicted following 30-month ICS±LABA. CONCLUSION: Sputum-derived transcriptomic signatures from an asthma cohort can be recapitulated in bronchial biopsies of patients with COPD and identified a signature of airway mast cells as a predictor of corticosteroid responsiveness.


Assuntos
Corticosteroides , Asma , Mastócitos , Doença Pulmonar Obstrutiva Crônica , Células Th2 , Humanos , Administração por Inalação , Corticosteroides/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Biomarcadores , Broncodilatadores/uso terapêutico , Quimioterapia Combinada , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Células Th2/efeitos dos fármacos , Células Th2/metabolismo
12.
Respirology ; 28(2): 132-142, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414410

RESUMO

BACKGROUND AND OBJECTIVE: Smoking disturbs the bronchial-mucus-barrier. This study assesses the cellular composition and gene expression shifts of the bronchial-mucus-barrier with smoking to understand the mechanism of mucosal damage by cigarette smoke exposure. We explore whether single-cell-RNA-sequencing (scRNA-seq) based cellular deconvolution (CD) can predict cell-type composition in RNA-seq data. METHODS: RNA-seq data of bronchial biopsies from three cohorts were analysed using CD. The cohorts included 56 participants with chronic obstructive pulmonary disease [COPD] (38 smokers; 18 ex-smokers), 77 participants without COPD (40 never-smokers; 37 smokers) and 16 participants who stopped smoking for 1 year (11 COPD and 5 non-COPD-smokers). Differential gene expression was used to investigate gene expression shifts. The CD-derived goblet cell ratios were validated by correlating with staining-derived goblet cell ratios from the COPD cohort. Statistics were done in the R software (false discovery rate p-value < 0.05). RESULTS: Both CD methods indicate a shift in bronchial-mucus-barrier cell composition towards goblet cells in COPD and non-COPD-smokers compared to ex- and never-smokers. It shows that the effect was reversible within a year of smoking cessation. A reduction of ciliated and basal cells was observed with current smoking, which resolved following smoking cessation. The expression of mucin and sodium channel (ENaC) genes, but not chloride channel genes, were altered in COPD and current smokers compared to never smokers or ex-smokers. The goblet cell-derived staining scores correlate with CD-derived goblet cell ratios. CONCLUSION: Smoking alters bronchial-mucus-barrier cell composition, transcriptome and increases mucus production. This effect is partly reversible within a year of smoking cessation. CD methodology can predict goblet-cell percentages from RNA-seq.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Transcriptoma/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Muco/metabolismo , Biópsia , Fumar/efeitos adversos , Fumar/genética
13.
Cells ; 11(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359818

RESUMO

Cigarette smoking causes hypomethylation of the gene Aryl Hydrocarbon Receptor Repressor (AHRR), which regulates detoxification and oxidative stress-responses. We investigated whether AHRR DNA methylation is related to chronic obstructive pulmonary disease (COPD) and studied its function in airway epithelial cells (AECs). The association with COPD was assessed in blood from never and current smokers with/without COPD, and in AECs from ex-smoking non-COPD controls and GOLD stage II-IV COPD patients cultured with/without cigarette smoke extract (CSE). The effect of CRISPR/Cas9-induced AHRR knockout on proliferation, CSE-induced mitochondrial membrane potential and apoptosis/necrosis in human bronchial epithelial 16HBE cells was studied. In blood, DNA methylation of AHRR at cg05575921 and cg21161138 was lower in smoking COPD subjects than smoking controls. In vitro, AHRR DNA methylation at these CpG-sites was lower in COPD-derived than control-derived AECs only upon CSE exposure. Upon AHRR knockout, we found a lower proliferation rate at baseline, stronger CSE-induced decrease in mitochondrial membrane potential, and higher CSE-induced late apoptosis/necroptosis. Together, our results show lower DNA methylation of AHRR upon smoking in COPD patients compared to non-COPD controls. Our data suggest that higher airway epithelial AHRR expression may lead to impaired cigarette smoke-induced mitochondrial dysfunction and apoptosis/necroptosis, potentially promoting unprogrammed/immunogenic cell death.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Receptores de Hidrocarboneto Arílico , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fumar Cigarros/efeitos adversos , Metilação de DNA/genética , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Nicotiana/efeitos adversos , Nicotiana/metabolismo
14.
Lung ; 200(6): 687-690, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36282357

RESUMO

The serum level of the soluble Receptor for Advanced Glycation End-products (sRAGE) is a promising blood biomarker for the development, severity, and progression of chronic obstructive pulmonary disease (COPD). However, cigarette smoking causes a nearly instant drop in circulating sRAGE levels, strongly impacting on the variability in sRAGE levels. In the current study, we investigated the possible mechanism behind the sudden drop in sRAGE upon smoking. We showed that the number of activated neutrophils in blood significantly increases within two hours upon smoking three cigarettes within one hour. Furthermore, an increased expression of the leukocyte activation marker CD11b, which is a known ligand for RAGE, was observed upon smoking. Additionally, the in vitro activation of neutrophils increased their capacity to bind sRAGE. Together, these data indicate that smoking activates neutrophils in the circulation with concomitant upregulation of the RAGE ligand CD11b, leading to reduced levels of sRAGE in serum.


Assuntos
Neutrófilos , Receptores Imunológicos , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Neutrófilos/metabolismo , Ligantes , Biomarcadores , Fumar/efeitos adversos
15.
Respir Res ; 23(1): 227, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056356

RESUMO

BACKGROUND: Despite the well-known detrimental effects of cigarette smoke (CS), little is known about the complex gene expression dynamics in the early stages after exposure. This study aims to investigate early transcriptomic responses following CS exposure of airway epithelial cells in culture and compare these to those found in human CS exposure studies. METHODS: Primary bronchial epithelial cells (PBEC) were differentiated at the air-liquid interface (ALI) and exposed to whole CS. Bulk RNA-sequencing was performed at 1 h, 4 h, and 24 h hereafter, followed by differential gene expression analysis. Results were additionally compared to data retrieved from human CS studies. RESULTS: ALI-PBEC gene expression in response to CS was most significantly changed at 4 h after exposure. Early transcriptomic changes (1 h, 4 h post CS exposure) were related to oxidative stress, xenobiotic metabolism, higher expression of immediate early genes and pro-inflammatory pathways (i.e., Nrf2, AP-1, AhR). At 24 h, ferroptosis-associated genes were significantly increased, whereas PRKN, involved in removing dysfunctional mitochondria, was downregulated. Importantly, the transcriptome dynamics of the current study mirrored in-vivo human studies of acute CS exposure, chronic smokers, and inversely mirrored smoking cessation. CONCLUSION: These findings show that early after CS exposure xenobiotic metabolism and pro-inflammatory pathways were activated, followed by activation of the ferroptosis-related cell death pathway. Moreover, significant overlap between these transcriptomic responses in the in-vitro model and human in-vivo studies was found, with an early response of ciliated cells. These results provide validation for the use of ALI-PBEC cultures to study the human lung epithelial response to inhaled toxicants.


Assuntos
Fumar Cigarros , Xenobióticos , Brônquios/metabolismo , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Células Epiteliais/metabolismo , Humanos , Mucosa , Nicotiana , Xenobióticos/metabolismo , Xenobióticos/farmacologia
16.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887096

RESUMO

Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449-/- mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449-/- mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449-/- mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449-/- cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.


Assuntos
Aurora Quinase A/metabolismo , Desacetilase 6 de Histona/metabolismo , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Aurora Quinase A/genética , Cílios/genética , Células Epiteliais , Camundongos , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Tubulina (Proteína)/genética
17.
Respirology ; 27(11): 929-940, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861464

RESUMO

BACKGROUND AND OBJECTIVE: Asthma and chronic obstructive pulmonary disease (COPD) are two prevalent and complex diseases that require personalized management. Although a strategy based on treatable traits (TTs) has been proposed, the prevalence and relationship of TTs to the diagnostic label and disease severity established by the attending physician in a real-world setting are unknown. We assessed how the presence/absence of specific TTs relate to the diagnosis and severity of 'asthma', 'COPD' or 'asthma + COPD'. METHODS: The authors selected 30 frequently occurring TTs from the NOVELTY study cohort (NOVEL observational longiTudinal studY; NCT02760329), a large (n = 11,226), global study that systematically collects data in a real-world setting, both in primary care clinics and specialized centres, for patients with 'asthma' (n = 5932, 52.8%), 'COPD' (n = 3898, 34.7%) or both ('asthma + COPD'; n = 1396, 12.4%). RESULTS: The results indicate that (1) the prevalence of the 30 TTs evaluated varied widely, with a mean ± SD of 4.6 ± 2.6, 5.4 ± 2.6 and 6.4 ± 2.8 TTs/patient in those with 'asthma', 'COPD' and 'asthma + COPD', respectively (p < 0.0001); (2) there were no large global geographical variations, but the prevalence of TTs was different in primary versus specialized clinics; (3) several TTs were specific to the diagnosis and severity of disease, but many were not; and (4) both the presence and absence of TTs formed a pattern that is recognized by clinicians to establish a diagnosis and grade its severity. CONCLUSION: These results provide the largest and most granular characterization of TTs in patients with airway diseases in a real-world setting to date.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Asma/epidemiologia , Humanos , Estudos Longitudinais , Fenótipo , Prevalência , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
18.
Sci Rep ; 12(1): 5610, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379844

RESUMO

Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Células Endoteliais/metabolismo , Humanos , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumantes
19.
Chest ; 161(5): 1155-1166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104449

RESUMO

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética
20.
Allergy ; 77(7): 1991-2024, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35113452

RESUMO

Currently available European Alpine Altitude Climate Treatment (AACT) programs combine the physical characteristics of altitude with the avoidance of environmental triggers in the alpine climate and a personalized multidisciplinary pulmonary rehabilitation approach. The reduced barometric pressure, oxygen pressure, and air density, the relatively low temperature and humidity, and the increased UV radiation at moderate altitude induce several physiological and immunological adaptation responses. The environmental characteristics of the alpine climate include reduced aeroallergens such as house dust mites (HDM), pollen, fungi, and less air pollution. These combined factors seem to have immunomodulatory effects controlling pathogenic inflammatory responses and favoring less neuro-immune stress in patients with different asthma phenotypes. The extensive multidisciplinary treatment program may further contribute to the observed clinical improvement by AACT in asthma control and quality of life, fewer exacerbations and hospitalizations, reduced need for oral corticosteroids (OCS), improved lung function, decreased airway hyperresponsiveness (AHR), improved exercise tolerance, and improved sinonasal outcomes. Based on observational studies and expert opinion, AACT represents a valuable therapy for those patients irrespective of their asthma phenotype, who cannot achieve optimal control of their complex condition despite all the advances in medical science and treatment according to guidelines, and therefore run the risk of falling into a downward spiral of loss of physical and mental health. In the light of the observed rapid decrease in inflammation and immunomodulatory effects, AACT can be considered as a natural treatment that targets biological pathways.


Assuntos
Altitude , Asma , Alérgenos , Animais , Asma/etiologia , Asma/terapia , Clima , Humanos , Pyroglyphidae , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA