Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain Res Treat ; 2015: 136409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27026828

RESUMO

Pregabalin, an approved treatment for fibromyalgia (FM), has been shown to decrease sympathetic nervous system (SNS) activity and inhibit sympathetically maintained pain, but its effects on exercise responses have not been reported. Methods. Using a randomized double-blind crossover design, we assessed the effect of 5 weeks of pregabalin (versus placebo) on acute cardiovascular and subjective responses to moderate exercise in 19 FM patients. Blood pressure (BP), heart rate (HR), and ratings of perceived exertion (RPE) during exercise and ratings of pain, physical fatigue, and mental fatigue before, during, and for 48 hours after exercise were compared in patients on pregabalin versus placebo and also versus 18 healthy controls. Results. On placebo, exercise RPE and BP were significantly higher in FM patients than controls (p < 0.04). Pregabalin responders (n = 12, defined by patient satisfaction and symptom changes) had significantly lower exercise BP, HR, and RPE on pregabalin versus placebo (p < 0.03) and no longer differed from controls (p > 0.26). Cardiovascular responses of nonresponders (n = 7) were not altered by pregabalin. In responders, pregabalin improved ratings of fatigue and pain (p < 0.04), but negative effects on pain and fatigue were seen in nonresponders. Conclusions. These preliminary findings suggest that pregabalin may normalize cardiovascular and subjective responses to exercise in many FM patients.

2.
Exp Physiol ; 99(2): 368-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24142455

RESUMO

NEW FINDINGS: What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Láctico/metabolismo , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Dor/fisiopatologia , Sensação/fisiologia , Adulto , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Dor/metabolismo , Resistência Física/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
3.
Psychoneuroendocrinology ; 38(12): 2983-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24054763

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) often worsens fatigue in patients with prostate cancer, producing symptoms similar to chronic fatigue syndrome (CFS). Comparing expression (mRNA) of many fatigue-related genes in patients with ADT-treated prostate cancer versus with CFS versus healthy controls, and correlating mRNA with fatigue severity may clarify the differing pathways underlying fatigue in these conditions. METHODS: Quantitative real-time PCR was performed on leukocytes from 30 fatigued, ADT-treated prostate cancer patients (PCF), 39 patients with CFS and 22 controls aged 40-79, together with ratings of fatigue and pain severity. 46 genes from these pathways were included: (1) adrenergic/monoamine/neuropeptides, (2) immune, (3) metabolite-detecting, (4) mitochondrial/energy, (5) transcription factors. RESULTS: PCF patients showed higher expression than controls or CFS of 2 immune transcription genes (NR3C1 and TLR4), chemokine CXCR4, and mitochondrial gene SOD2. They showed lower expression of 2 vasodilation-related genes (ADRB2 and VIPR2), 2 cytokines (TNF and LTA), and 2 metabolite-detecting receptors (ASIC3 and P2RX7). CFS patients showed higher P2RX7 and lower HSPA2 versus controls and PCF. Correlations with fatigue severity were similar in PCF and CFS for only DBI, the GABA-A receptor modulator (r=-0.50, p<0.005 and r=-0.34, p<0.05). Purinergic P2RY1 was correlated only with PCF fatigue and pain severity (r=+0.43 and +0.59, p=0.025 and p=0.001). CONCLUSIONS: PCF patients differed from controls and CFS in mean expression of 10 genes from all 5 pathways. Correlations with fatigue severity implicated DBI for both patient groups and P2RY1 for PCF only. These pathways may provide new targets for interventions to reduce fatigue.


Assuntos
Síndrome de Fadiga Crônica/genética , Fadiga/genética , Expressão Gênica/fisiologia , Leucócitos/metabolismo , Neoplasias da Próstata/genética , Adulto , Idoso , Análise por Conglomerados , DNA Complementar/biossíntese , DNA Complementar/genética , Depressão/psicologia , Exercício Físico/fisiologia , Fadiga/metabolismo , Fadiga/psicologia , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/psicologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Dor/psicologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/psicologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Regressão , Sono/fisiologia
4.
Psychosom Med ; 74(1): 46-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22210239

RESUMO

OBJECTIVE: Chronic fatigue syndrome (CFS) and multiple sclerosis (MS) are characterized by debilitating fatigue, yet evaluation of this symptom is subjective. We examined metabolite-detecting, adrenergic, and immune gene expression (messenger ribonucleic acid [mRNA]) in patients with CFS (n = 22) versus patients with MS (n = 20) versus healthy controls (n = 23) and determined their relationship to fatigue and pain before and after exercise. METHODS: Blood samples and fatigue and pain ratings were obtained at baseline and 0.5, 8, 24, and 48 hours after sustained moderate exercise. Leukocyte mRNA of four metabolite-detecting receptors (acid-sensing ion channel 3, purinergic type 2X4 and 2X5 receptors, and transient receptor potential vanilloid type 1) and four adrenergic (α-2a, ß-1, and ß-2 receptors and catechol-O-methyltransferase) and five immune markers (CD14, toll-like receptor 4 [TLR4], interleukin [IL] 6, IL-10, and lymphotoxin α) was examined using quantitative polymerase chain reaction. RESULTS: Patients with CFS had greater postexercise increases in fatigue and pain (10-29 points above baseline, p < .001) and greater mRNA increases in purinergic type 2X4 receptor, transient receptor potential vanilloid type 1, CD14, and all adrenergic receptors than controls (mean ± standard error = 1.3 ± 0.14- to 3.4 ± 0.90-fold increase above baseline, p = .04-.005). Patients with CFS with comorbid fibromyalgia (n = 18) also showed greater increases in acid-sensing ion channel 3 and purinergic type 2X5 receptors (p < .05). Patients with MS had greater postexercise increases than controls in ß-1 and ß-2 adrenergic receptor expressions (1.4 ± 0.27- and 1.3 ± 0.06-fold increases, respectively, p = .02 and p < .001) and greater decreases in TLR4 (p = .02). In MS, IL-10 and TLR4 decreases correlated with higher fatigue scores. CONCLUSIONS: Postexercise mRNA increases in metabolite-detecting receptors were unique to patients with CFS, whereas both patients with MS and patients with CFS showed abnormal increases in adrenergic receptors. Among patients with MS, greater fatigue was correlated with blunted immune marker expression.


Assuntos
Síndrome de Fadiga Crônica/fisiopatologia , Leucócitos/metabolismo , Esclerose Múltipla/fisiopatologia , Adrenérgicos/metabolismo , Adulto , Análise de Variância , Biomarcadores/metabolismo , Estudos de Casos e Controles , Suscetibilidade a Doenças , Teste de Esforço , Tolerância ao Exercício/fisiologia , Fadiga/genética , Fadiga/fisiopatologia , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/metabolismo , Feminino , Fibromialgia/genética , Fibromialgia/imunologia , Fibromialgia/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interação Gene-Ambiente , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Dor/genética , Dor/fisiopatologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Índice de Gravidade de Doença , Canais de Cátion TRPV , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA